Field Application

Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield

  • Yan SHI ,
  • Junhui XIE ,
  • Xiaoting GUO ,
  • Tong WU ,
  • Dequan CHEN ,
  • Lin SUN ,
  • Daijun DU
Expand
  • 1. Zhundong Oil Production Plant, PetroChina Xinjiang Oilfield Company, Fukang, Xinjiang 831500, China
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2023-08-30

  Online published: 2024-03-05

Abstract

Addressing the challenges of moderate to strong velocity sensitivity damage and strong to extremely strong water sensitivity damage in the medium and deep heavy oil reservoirs of Xinjiang oilfields, which lead to suboptimal waterflooding outcomes, a study was conducted leveraging the unique physical and chemical properties of CO2. Utilizing high-temperature, high-pressure PVT apparatus and long core displacement equipment, the feasibility of enhancing oil recovery through CO2 flooding/huff and puff was explored by determining the high-pressure physical properties of CO2-crude oil and analyzing the composition and viscosity changes of the produced oil with gas chromatography and high-temperature, high-pressure rheometry. The experimental results show that 57.345% mole fraction of CO2 can increase the dissolved gas-oil ratio(GOR) from 32 m3/m3 to 149.3 m3/m3, the bubble point pressure(pb) from 6.8 MPa to 15.7 MPa, the volume coefficient of crude oil from 1.06 to 1.27, the density of crude oil from 0.896 5 g/cm3 to 0.854 8 g/cm3, and the viscosity of crude oil from 419.3 mPa·s to 253.4 mPa·s. Therefore, CO2 can effectively supplement the formation energy, increase the elastic energy of crude oil and reduce the seepage resistance. The first round of 0.95 PV(pore volume) CO2 flooding has a crude oil recovery of 32.8%, and the fluid in the porous medium is redistributed after 24 hours of shut-in. The second round of 0.5 PV CO2 flooding can increase the crude oil recovery by 17.9%. The crude oil recovery of five rounds of CO2 huff and puff is 63.5%. The viscosity of the produced oil tends to decrease, mainly due to the deposition of asphaltenes in crude oil in porous media. The experimental results have confirmed the feasibility of CO2 flooding/huff and puff in the recovery of heavy oil in the middle and deep layers of Xinjiang Oilfield.

Cite this article

Yan SHI , Junhui XIE , Xiaoting GUO , Tong WU , Dequan CHEN , Lin SUN , Daijun DU . Experimental study on CO2 flooding/huff and puff of medium-deep heavy oil in Xinjiang Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(1) : 76 -82 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.01.011

References

[1] 夏春正, 赵健, 刘锋, 等. 吐哈探区稠油油藏注气吞吐适应性评价[J]. 新疆石油地质, 2023, 44(3): 341-346.
[1] XIA Chunzheng, ZHAO Jian, LIU Feng, et al. Adaptability evaluation of gas huff-n-puff in heavy oil reservoirs in Tuha exploration area[J]. Xinjiang Petroleum Geology, 2023, 44(3): 341-346.
[2] 郭臣, 解慧, 聂延波, 等. 塔河碳酸盐岩缝洞型油藏超稠油注氮气实验研究[J]. 油气藏评价与开发, 2017, 7(4): 22-26.
[2] GUO Cheng, XIE Hui, NIE Yanbo, et al. Research on nitrogen gas injection in super heavy oil of Tahe carbonate fracture-cave type reservoir[J]. Reservoir Evaluation and Development, 2017, 7(4): 22-26.
[3] 王晓燕, 章杨, 张杰, 等. 稠油油藏注CO2吞吐提高采收率机制[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 102-111.
[3] WANG Xiaoyan, ZHANG Yang, ZHANG Jie, et al. EOR mechanisms of CO2 huff and puff process for heavy oil recovery[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 102-111.
[4] 郭省学. 高温高压条件下CO2驱稠油微观运移特征[J]. 油气地质与采收率, 2019, 26(3): 99-104.
[4] GUO Xingxue. Study on microscopic migration characteristics of heavy oil by CO2 flooding at high temperature and high pressure[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 99-104.
[5] ZHOU X, LI X L, SHEN D H, et al. CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study[J]. Energy, 2022, 239: 122003.
[6] ZHOU X, YUAN Q W, RUI Z H, et al. Feasibility study of CO2 huff ‘n’ puff process to enhance heavy oil recovery via long core experiments[J]. Applied energy, 2019, 236: 526-539.
[7] FIROUZ A Q, TORABI F. Utilization of carbon dioxide and methane in huff-and-puff injection scheme to improve heavy oil recovery[J]. Fuel, 2014, 117(B): 966-973.
[8] 邓丹. 稠油油藏注CO2吞吐三维物理模型实验及参数优化[D]. 成都: 西南石油大学, 2017
[8] DENG Dan. Three dimensional physical model experiment and parameter optimization of CO2 huff and puff in heavy oil reservoir[D]. Chengdu: Southwest Petroleum University, 2017.
[9] 张丽雅, 宋兆杰, 马平华, 等. 稠油油藏注超临界二氧化碳驱油影响因素分析[J]. 地质与勘探, 2017, 53(4): 801-806.
[9] ZHANG Liya, SONG Zhaojie, MA Pinghua, et al. Analysis on influential factors of supercritical carbon dioxide flooding in heavy-oil reservoirs[J]. Geology and Exploration, 2017, 53(4): 801-806.
[10] 罗瑞兰, 程林松, 李春兰, 等. 稠油油藏注CO2吞吐适应性研究[J]. 西安石油大学学报(自然科学版), 2005, 20(1): 43-46.
[10] LUO Ruilan, CHEN Linsong, LI Chunlan, et al. Research on the adaptability of cyclic CO2 injection for heavy oil reservoir[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2005, 20(1): 43-46.
[11] 孙焕泉, 王海涛, 吴光焕, 等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质, 2020, 42(6): 1009-1013.
[11] SUN Huanquan, WANG Haitao, WU Guanghuan, et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology & Experiment, 2020, 42(6): 1009-1013.
[12] 蒲万芬, 孙波帅, 李一波, 等. 塔河缝洞型超稠油油藏二氧化碳驱实验研究[J]. 特种油气藏, 2016, 23(4): 123-126.
[12] PU Wanfen, SUN Boshuai, LI Yibo, et al. CO2 Flooding experiment of super-heavy oil reservoir in Tahe Oilfield[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 123-126.
[13] 曹亚明, 郑家朋, 孙蓉, 等. 冀东油田浅层非均质油藏CO2驱数值模拟与方案设计[J]. 石油天然气学报, 2014, 36(5): 125-127.
[13] CAO Yaming, ZHENG Jiapeng, SUN Rong, et al. Numerical simulation and scheme design of CO2 flooding in shallow heterogeneous reservoirs of Jidong Oilfield[J]. Journal of Oil and Gas Technology, 2014, 36(5): 125-127.
[14] 武玺, 张祝新, 章晓庆, 等. 大港油田开发中后期稠油油藏CO2吞吐参数优化及实践[J]. 油气藏评价与开发, 2020, 10(3): 80-85.
[14] Wu Xi, Zhang Zhuxin, Zhang Xiaoqing, et al. Optimization and practice of CO2 huff and puff parameters of heavy oil reservoir in the middle and late development stage in Dagang Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(3): 80-85.
[15] BANK G C, RIESTENBERG D, KOPERNA G J. CO2-enhanced oil recovery potential of the appalachian basin[C]// Paper SPE-111282-MS presented at the Eastern Regional Meeting, Lexingtong, Kentucky, USA, October 17-19, 2007.
[16] SPIVAK A, KARAOGUZ D, ISSEVER K. Simulation of immiscible CO2 injection in a fractured carbonate reservoir, Bati Raman Field, Turkey[C]// Paper SPE-18765-MS presented at the SPE California Regional Meeting, Bakersfield, California, USA, April 5-7, 1989.
[17] 刘家军, 李立峰, 高庙. 低渗透油藏中CO2与原油的相互作用[J]. 油田化学, 2021, 38(3): 464-469.
[17] LIU Jiajun, LI Lifeng, GAO Miao. Interaction between CO2 and crude oil in low permeability reservoir[J]. Oilfield Chemistry, 2021, 38(3): 464-469.
[18] 王千, 杨胜来, 拜杰, 等. 非均质多层储层中CO2驱替方式对驱油效果及储层伤害的影响[J]. 石油学报, 2020, 41(7): 875-884.
[18] WANG Qian, YANG Shenglai, BAI Jie, et al. Influence of CO2 flooding mode on oil displacement effect and reservoir damage in heterogeneous multi-layer reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 875-884.
[19] ZHU W Y, MA Q P, SONG Z Y, et al. The effect of injection pressure on the microscopic migration characteristics by CO2 flooding in heavy oil reservoirs[J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44(1): 1459-1467.
[20] LI Y B, PU W F, WEI B, et al. The feasibility of CO2 and N2 injection for the Tahe fracture-cavity carbonate extra-heavy oil reservoir: An experimental study[J]. Fuel, 2018, 226: 598-606.
[21] ZHENG S X, LI H Z, YANG D Y. Pressure maintenance and improving oil recovery with immiscible CO2 injection in thin heavy oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 112: 139-152.
[22] 邢钰, 吴艳华, 郭继香, 等. 稠油致黏关键组分微观性质[J]. 科学技术与工程, 2020, 20(5): 1833-1838.
[22] XING Yu, WU Yanhua, GUO Jixiang, et al. Microscopic properties of viscous key components in heavy crude oils[J]. Science Technology and Engineering, 2020, 20(5): 1833-1838.
[23] 郭永伟, 闫方平, 王晶, 等. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[23] GUO Yongwei, YAN Fangping, WANG Jing, et al. Characteristics of solid deposition and reservoir damage of CO2flooding in tight sandstone reservoirs[J]. Lithologic Reservoirs, 2021, 33(3): 153-161.
[24] 赵长虹, 孙新革, 卢迎波, 等. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[24] ZHAO Changhong, SUN Xinge, LU Yingbo, et al. Physical simulation experiment of steam chamber evolution in compound development of thin-layer ultra-heavy oil flooding And drainage[J]. Lithologic Reservoirs, 2023, 35(5): 161-168.
[25] 蔡耀荣, 武瑞明, 赵悦, 等. 重质油沥青质致粘机理研究进展[J]. 应用化工, 2018, 47(5): 1033-1037.
[25] CAI Yaorong, WU Ruiming, ZHAO Yue, et al. Research progress on viscosity-mechanism from asphaltenes of heavy oil[J]. Applied Chemical Industry, 2018, 47(5): 1033-1037.
[26] 赵文学, 韩克江, 曾鹤, 等. 稠油降粘方法的作用机理及研究进展[J]. 当代化工, 2015, 44(6): 1365-1367.
[26] ZHAO Wenxue, HAN Kejiang, ZENG He, et al. Mechanisms and research progress of heavy oil viscosity reduction methods[J]. Contemporary Chemical Industry, 2015, 44(6): 1365-1367.
[27] 汪双清, 沈斌, 林壬子. 辽河超稠油的化学组成特征及其致黏因素探讨[J]. 石油学报(石油加工), 2010, 26(6): 894-900.
[27] WANG Shuangqing, SHEN Bin, LIN Renzi. Investigation on the composition of the extra heavy oil in Liaohe Oilfield and the cause of its high viscosity[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2010, 26(6): 894-900.
Outlines

/