Comprehensive Research

Etching morphology and mechanical properties of carbonate rocks under acid action

  • Wen ZHANG ,
  • Lixi LIANG ,
  • Xiangjun LIU ,
  • Jian XIONG ,
  • Yinan ZHANG
Expand
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500,China

Received date: 2023-10-07

  Online published: 2024-05-07

Abstract

The structural and mechanical characteristics of carbonate rock under the action of chemistry and mechanics is an important research topic for the evaluation of the effectiveness of acid fracturing technology in this kind of reservoir. This research focused on the impact of 20% HCI gelled acid on the structural and mechanical properties of carbonate rocks, categorized into four types based on their mineral composition: limestone, dolomite-bearing limestone, limestone-bearing dolomite, and dolomite. The experiments revealed distinct reactions of these rock types to acid exposure. Limestone exhibited uniform etching, while dolomite-bearing limestone showed selective etching, creating wormhole-like grooves. Limestone-bearing dolomite and dolomite predominantly experienced point etching and erosion along structural planes. Initially, the shear failure of carbonate rocks was primarily governed by matrix strength. However, acid treatment altered their internal structure, making them more susceptible to tensile stress damage, leading to potential splitting or destruction along structural planes. Notably, the reduction in the macroscopic strength of the carbonate rocks post-acid treatment was significantly greater than the decrease in matrix strength alone. The invasion of acid liquid into the rocks introduced additional microscopic defects, evidenced by a reduced proportion of elastic energy and an increased proportion of dissipated energy at peak stress levels. This suggests that the macroscopic mechanical property deterioration results from both matrix strength weakening and internal structural changes. These findings offer valuable insights for field acid fracturing operations in carbonate rock reservoirs and aid in the planning of subsequent production strategies

Cite this article

Wen ZHANG , Lixi LIANG , Xiangjun LIU , Jian XIONG , Yinan ZHANG . Etching morphology and mechanical properties of carbonate rocks under acid action[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(2) : 247 -255 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.02.010

References

[1] 王永辉, 李永平, 程兴生, 等. 高温深层碳酸盐岩储层酸化压裂改造技术[J]. 石油学报, 2012, 33(增刊2): 166-173.
[1] WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(suppl. 2): 166-173.
[2] 倪新锋, 沈安江, 乔占峰, 等. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[2] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
[3] 何文渊, 云建兵, 钟建华. 川东北二叠系长兴组碳酸盐岩云化成储机制[J]. 岩性油气藏, 2022, 34(5): 1-25.
[3] HE Wenyuan, YUN Jianbing, ZHONG Jianhua. Reservoir-forming mechanism of carbonate dolomitization of Permian Changxing Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(5): 1-25.
[4] 赵宗举, 范国章, 吴兴宁, 等. 中国海相碳酸盐岩的储层类型、勘探领域及勘探战略[J]. 海相油气地质, 2007, 12(1): 1-11.
[4] ZHAO Zongju, FAN Guozhang, WU Xingning, et al. Reservoir types, exploration domains and exploration strategy of marine carbonates in China[J]. Marine Origin Petroleum Geology, 2007, 12(1): 1-11.
[5] 崔俊, 毛建英, 陈登钱, 等. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[5] CUI Jun, MAO Jianying, CHEN Dengqian, et al. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs, 2022, 34(2): 45-53.
[6] 黄腾达, 纪成, 赵兵, 等. 超深碳酸盐岩储层岩石三轴压缩实验与数值模拟研究[J]. 断块油气田, 2024, 31(1): 134-139.
[6] HUANG Tengda, JI Cheng, ZHAO Bing, et al. Triaxial compression experiment of rocks and numerical simulation in ultra-deep carbonate reservoir[J]. Fault-block Oil&Gas Field, 2024, 31(1): 134-139.
[7] 孙斌, 张培先, 高全芳, 等. 川东南南川地区茅口组一段碳酸盐岩储层特征及富集模式[J]. 非常规油气, 2022, 9(3): 21-31.
[7] SUN Bin, ZHANG Peixian, GAO Quanfang, et al. Reservoir properties and accumulation mode of carbonate rocks in Mao1 Member of Nanchuan Area in southeast Sichuan[J]. Unconventional Oil & Gas, 2022, 9(3): 21-31.
[8] 张建利, 孙忠杰, 张泽兰. 碳酸盐岩油藏酸岩反应动力学实验研究[J]. 油田化学, 2003, 20(3): 216-219.
[8] ZHANG Jianli, SUN Zhongjie, ZHANG Zelan. An experimental study on acid/rock reaction dynamics for carbonatestone reservoir cores[J]. Oilfield Chemistry, 2003, 20(3): 216-219.
[9] HYUNSANG Y, YOUNGMIN K, WONSUK L, et al. An experimental study on acid-rock reaction kinetics using dolomite in carbonate acidizing[J]. Journal of Petroleum Science and Engineering, 2018, 168: 478-494.
[10] 任永琳, 王达, 冯浦涌, 等. 碳酸盐岩储层机械转向酸化酸压技术最新研究进展[J]. 非常规油气, 2022, 9(5): 1-8.
[10] REN Yonglin, WANG Da, FENG Puyong, et al. Latest research progress of carbonate formation mechanical diversion stimulation technology[J]. Unconventional Oil & Gas, 2022, 9(5): 1-8.
[11] 李小刚, 杨兆中, 苏建政, 等. 酸压过程中多尺度酸岩反应特征实验研究[J]. 石油实验地质, 2010, 32(5): 504-508.
[11] LI Xiaogang, YANG Zhaozhong, SU Jianzheng, et al. Experimental study of multi-scale reaction between acid and rock in acid fracturing[J]. Petroleum Geology and Experiment, 2010, 32(5): 504-508.
[12] 刘超, 苟波, 管晨呈, 等. 关井效应对酸压裂缝刻蚀形貌与导流能力影响[J]. 中国石油大学学报(自然科学版), 2021, 45(2): 96-103.
[12] LIU Chao, GOU Bo, GUAN Chencheng, et al. Effect of well shut-in on acid etching morphology and conductivity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(2): 96-103.
[13] 薛衡, 黄祖熹, 赵立强, 等. 考虑岩矿非均质性的前置液酸压模拟研究[J]. 天然气工业, 2018, 38(2): 59-66.
[13] XUE Heng, HUANG Zuxi, Zhao Liqiang, et al. A simulation study on the preflush acid fracturing considering rock heterogeneity[J]. Natural Gas Industry, 2018, 38(2): 59-66.
[14] BUJISE M A. Understanding wormholing mechanisms can improve acid treatments in carbonate formations[J]. SPE Production & Operations, 2000, 15(3): 168-175.
[15] 平恩顺, 张明晰, 王瑞泓, 等. 跨采油树不动管柱酸压增注技术研究[J]. 钻采工艺, 2023, 46(2): 122-125.
[15] PING Enshun, ZHANG Mingxi, WANG Ruihong, et al. Development and application of christmas tree protection device for immobile string acidizing[J]. Drilling & Production Technology, 2023, 46(2): 122-125.
[16] 宋周成, 段永贤, 何思龙, 等. 富满油田超深碳酸盐岩酸压液体体系优化组合及应用[J]. 钻采工艺, 2023, 46(2): 139-145.
[16] SONG Zhoucheng, DUAN Yongxian, HE Silong, et al. Combination of acid fracturing fluid system for ultra-deep carbonate reservoir in Fuman Oilfield and its application[J]. Drilling & Production Technology, 2023, 46(2): 139-145.
[17] 龚蔚. 深层裂缝型碳酸盐岩油藏水平井水力喷射酸压技术[J]. 断块油气田, 2020, 27(6): 808-811.
[17] GONG Wei. Hydrajet acid fracturing technique of horizontal well in deep fractured carbonate reservoir[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 808-811.
[18] 周健, 陈勉, 金衍, 等. 压裂酸化中近缝区灰岩强度弱化效应试验研究[J]. 岩石力学与工程学报, 2007, 26(1): 206-210.
[18] ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on strength reduction effects of limestone near fracture area during acid fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 206-210.
[19] ZHANG H, ZHONG Y, ZHANG J, et al. Experimental research on deterioration of mechanical properties of carbonate rocks under acidified conditions[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106612.
[20] 何春明, 郭建春. 酸液对灰岩力学性质影响的机制研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3016-3021.
[20] HE Chunming, GUO Jianchun. Mechanism study of acid on mechanical properties of limestone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(suppl. 2): 3016-3021.
[21] 陈红军, 刘超, 付珍, 等. 碳酸盐岩储层酸处理降低破裂压力研究综述[J]. 石油与天然气化工, 2010, 39(4): 339-343.
[21] CHEN Hongjun, LIU Chao, FU Zhen, et al. The survey on the acid-treatment lowering break-down pressure of carbonate rock reservoir[J]. Chemical Engineering of Oil and Gas, 2010, 39(4): 339-343.
[22] GUO Y T, HOU L F, YAO Y M, et al. Experimental study on influencing factors of fracture propagation in fractured carbonate rocks[J]. Journal of Structural Geology, 2019, 131: 103955.
[23] 刘向君, 徐晓雷, 刘洪, 等. 酸对灰岩地层井壁稳定性及临界压差的影响研究[J]. 钻采工艺, 2007, 30(4): 112-115.
[23] LIU Xiangjun, XU Xiaolei, LIU Hong, et al. Effects of acid on borehole face stability and critical producing pressure difference in limestone formation[J]. Drilling & Production Technology, 2007, 30(4): 112-115.
[24] 刘再华, DREYBRODT W, 李华举. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学, 2006, 31(3): 411-416.
[24] LIU Zaihua, DREYBRODT W, LI Huaju. Comparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science-Journal of China University of Geosciences, 2006, 31(3): 411-416.
[25] ANDRIAMIHAJA Spariharijaona, PADMANABHAN Eswaran, BEN-AWUAH Joel, 等. 静态条件下碳酸盐岩三维孔隙网络的溶蚀改造及其对孔隙结构的影响[J]. 石油勘探与开发, 2019, 46(2): 361-369.
[25] ANDRIAMIHAJA Spariharijaona, PADMANABHAN Eswaran, BEN-AWUAH Joel, et al. Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks[J]. Petroleum Exploitation and Development, 2019, 46(2): 361-369.
[26] 李新勇, 吴恒川, 房好青, 等. 微观结构差异对碳酸盐岩酸蚀损伤的影响[J]. 新疆石油地质, 2021, 42(2): 188-193.
[26] LI Xinyong, WU Hengchuan, FANG Haoqing, et al. Influences of microstructural differences on acid corrosive damage to carbonate rocks[J]. Xinjiang Petroleum Geology, 2021, 42(2): 188-193.
[27] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010.
[27] XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010.
[28] 张文, 刘向君, 梁利喜, 等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术, 2023, 51(2): 37-45.
[28] ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling[J]. Petroleum Drilling Techniques, 2023, 51(2): 37-45
[29] 申鑫, 郭建春, 王世彬. 阳离子表面活性剂遮蔽作用导致的酸化缓速研究[J]. 油气藏评价与开发, 2023, 13(1): 117-126.
[29] SHEN Xin, GUO Jianchun, WANG Shibin. Acidification retardation caused by shielding of cationic surfactants[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 117-126.
[30] 华青, 王昱珩, 张娜, 等. 碳酸盐岩酸蚀蚓孔影响因素模拟分析研究[J]. 石油地质与工程, 2023, 37(6): 97-102.
[30] HUA Qing, WANG Yuheng, ZHANG Na, et al. Simulation analysis of influencing factors of carbonate acidizing wormholes[J]. Petroleum Geology & Engineering, 2023, 37(6): 97-102.
[31] 史亚红, 陈文安, 李纲, 等. 风西混积碳酸盐岩储层测井流体识别及定量评价[J]. 石油地质与工程, 2023, 37(5): 10-16.
[31] SHI Yahong, CHEN Wen’an, LI Gang, et al. Logging fluid identification and quantitative evaluation of mixed carbonate reservoir in Fengxi area[J]. Petroleum Geology & Engineering, 2023, 37(5): 10-16.
[32] 郭凯, 范乐元, 金树堂, 等. 滨里海盆地东缘石炭系碳酸盐岩台缘带识别及展布特征[J]. 石油地质与工程, 2023, 37(3): 23-30.
[32] GUO Kai, FAN Leyuan, JIN Shutang, et al. Identification of Carboniferous carbonate platform margin and its distribution characteristics in the eastern margin of the Pre-Caspian Basin[J]. Petroleum Geology & Engineering, 2023, 37(3): 23-30.
Outlines

/