Comprehensive Research

Practice and understanding of water huff-n-puff in shale oil of Subei Basin

  • Guochen XU ,
  • Juan DU ,
  • Mingchen ZHU
Expand
  • 1. Taizhou Oil Production Plant, Sinopec East China Oil & Gas Company, Taizhou, Jiangsu 225300, China
    2. Sinopec Research Institute of Petroleum Engineering Co., Ltd, Beijing 102206, China

Received date: 2023-09-26

  Online published: 2024-05-07

Abstract

The production of BG shale oil Block of Jinhu Sag of Subei Basin declines rapidly after fracturing, showing poor development efficiency. Enhancing the estimated ultimate reserves(EUR) of individual wells during later depletion stages is crucial for profitable development. While CO2 huff-n-puff is a common stimulation technique, its high costs and variable effectiveness have limited its widespread adoption. Based on the geological characteristics of BG block, we carried out research on the mechanism of shale oil stimulation by water huff-n-puff by using core NMR, SEM, well test analysis and other methods, and clarified that water huff-n-puff can greatly develop the oil in 1~100 nm pores in imbibition process and improve the porosity and permeability conditions. Given the Subei Basin shale oil's notable hydrophilicity, rich oil content, and extensive fracture network, water huff-n-puff technology was proposed and field-tested. Up to now, the cumulative oil increase of the two test wells is more than 7 600 tons, which shows good application prospects and economic benefits. And it has guiding significance for the low-cost and efficient production stimulation in the shale oil development in Subei Basin.

Cite this article

Guochen XU , Juan DU , Mingchen ZHU . Practice and understanding of water huff-n-puff in shale oil of Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(2) : 256 -266 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.02.011

References

[1] 李泉辉, 肖晖, 梁朝阳, 等. 阜二段页岩油储层可压性评价研究[J]. 非常规油气, 2023, 10(5): 133-144.
[1] LI Quanhui, XIAO Hui, LIANG Chaoyang, et al. Study on compressibility evaluation of shale oil reservoir in Fu2 section[J]. Unconventional Oil & Gas, 2023, 10(5): 133-144.
[2] 肖阳, 王家豪, 李志刚, 等. 基于大数据的页岩油区块产量差异分析方法研究[J]. 钻采工艺, 2022, 45(3): 73-78.
[2] XIAO Yang, WANG Jiahao, LI Zhigang, et al. Study on production difference analysis method of shale oil play based on big data[J]. Drilling & Production Technology, 2022, 45(3): 73-78.
[3] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4): 25-30.
[3] LIN Senhu, ZOU Caineng, YUAN Xuanjun, et al. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4): 25-30.
[4] 杨勇. 济阳陆相断陷盆地页岩油富集高产规律[J]. 油气地质与采收率, 2023, 30(1): 1-20.
[4] YANG Yong. Enrichment and high production regularities of shale oil reservoirs in continental rift basin: A case study of Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 1-20.
[5] 李忠兴, 屈雪峰, 刘万涛, 等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发, 2015, 42(2): 217-221.
[5] LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 217-221.
[6] 姚红生, 云露, 昝灵, 等. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践[J]. 油气藏评价与开发, 2023, 13(2): 141-151.
[6] YAO Hongsheng, YUN Lu, ZAN Ling, et al. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(2): 141-151.
[7] 昝灵, 白鸾羲, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油基本特征及成因分析[J]. 石油实验地质, 2023, 45(2): 356-365.
[7] ZAN Ling, BAI Luanxi, YIN Yanling, et al. Basic characteristics and genesis analysis of shale oil in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 356-365.
[8] 王晓明, 陈军斌, 任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望[J]. 油气藏评价与开发, 2023, 13(1): 23-30.
[8] WANG Xiaoming, CHEN Junbin, REN Dazhong. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 23-30.
[9] 舒逸, 郑有恒, 包汉勇, 等. 四川盆地复兴地区下侏罗统页岩油气富集高产主控因素[J]. 世界石油工业, 2023, 30(5): 26-38.
[9] SHU Yi, ZHENG Youheng, BAO Hanyong, et al. Main controlling factors for high yield and enrichment of shale oil and gas in the lower Jurassic in the Fuxing Area of Sichuan Basin[J]. World Petroleum Industry, 2023, 30(5): 26-38.
[10] 荆晓明. 苏北盆地溱潼凹陷古近系阜二段页岩油甜点评价[J]. 非常规油气, 2023, 10(3): 31-38.
[10] JING Xiaoming. Evaluation of shale oil sweet spots in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Unconventional Oil & Gas, 2023, 10(3): 31-38.
[11] KIANI M, HSU T P, ROOSTAPOUR A, et al. A novel enhanced oil recovery approach to water flooding in Saskatchewan's tight oil plays[C]// Paper URTEC-2019-419-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019.
[12] SORENSEN J A, BRAUNBERGER J R, LIU G X, et al. Characterization and evaluation of the Bakken petroleum system for CO2 enhanced oil recovery[C]// Paper URTEC-2169871-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, Texas, USA, July 2015.
[13] 李亚茜, 姜杉钰, 牛琮凯. 从国内外经验谈重庆页岩油气产业集聚发展[J]. 世界石油工业, 2023, 30(5): 19-25.
[13] LI Yaxi, JIANG Shanyu, NIU Congkai. Thought on the development of Chongqing shale oil and gas industry agglomeration[J]. World Petroleum Industry, 2023, 30(5): 19-25.
[14] 王鹏志. 注水吞吐开发低渗透裂缝油藏探讨[J]. 特种油气藏, 2006, 12(2): 46-47.
[14] WANG Pengzhi. An approach of developing low permeability fractured reservoirs by cyclic water injection[J]. Special Oil and Gas Reservoirs, 2006, 12(2): 46-47.
[15] 刘新, 安飞, 陈庆海, 等. 提高致密油藏原油采收率技术分析——以巴肯组致密油为例[J]. 大庆石油地质与开发, 2016, 35(6): 164-169.
[15] LIU Xin, AN Fei, CHEN Qinghai, et al. Analyses of the EOR techniques for tight oil reservoirs: Taking Bakken Formation as an example[J]. Petroleum Geology and Oil field Development in Daqing, 2016, 35(6): 164-169.
[16] 杨建, 杨斌, 王良, 等. 川中大安寨段页岩油储层基质孔隙压裂液渗吸驱油侵入深度研究[J]. 油气地质与采收率, 2023, 30(5): 84-91.
[16] YANG Jian, YANG Bin, WANG Liang, et al. Invasion depths of fracturing fluid imbibition displacement in matrix pores of Da'an Zhai shale oil reservoirs in central Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 84-91.
[17] TODD H B, EVANS J G. Improved oil recovery IOR pilot projects in the Bakken Formation[C]// Paper SPE-180270-MS presented at the SPE Low Perm Symposium, Denver, Colorado, USA, May 2016.
[18] 陈劲松, 伍增贵, 年静波. 北美致密油气开发早期产量分级预测方法探讨[J]. 非常规油气, 2015, 2(3): 34-41.
[18] CHEN Jinsong, WU Zenggui, NIAN Jingbo. Classification prediction of oil production north america[J]. Unconventional Oil & Gas, 2015, 2(3): 34-41.
[19] 樊建明, 王冲, 屈雪峰, 等. 鄂尔多斯盆地致密油水平井注水吞吐开发实践——以延长组长7油层组为例[J]. 石油学报, 2019, 40(6): 706-715.
[19] FAN Jianming, WANG Chong, QU Xuefeng, et al. Development and practice of water flooding huff-puff in tight oil horizontal well, Ordos Basin: A case study of Yanchang Formation Chang 7 oil layer[J]. Acta Petrolei Sinica, 2019, 40(6): 706-715.
[20] TESTAMANTI M N, REZAEE R. Determination of NMR T2 cut-off for clay bound water in shales: A case study of Carynginia Formation, Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2017, 149: 497-503.
[21] 刘凯, 赵洋, 王维波, 等. 界面张力与润湿性对化学渗吸的影响[J]. 石油地质与工程, 2022, 36(4): 123-126.
[21] LIU Kai, ZHAO Yang, WANG Weibo, et al. Effect of interfacial tension and wettability on chemical imbibition[J]. Petroleum Geology & Engineering, 2022, 36(4): 123-126.
[22] 姜鹏, 郭和坤, 李海波, 等. 低渗透率砂岩可动流体T2截止值实验研究[J]. 测井技术, 2010, 34(4): 327-330.
[22] JIANG Peng, GUO Hekun, LI Haibo, et al. Experimental study on T2, cutoff in low permeability sandstones[J]. Well Logging Technology, 2010, 34(4): 327-330.
[23] 潘伟义, 郎东江, 伦增珉, 等. 致密油藏不同开发方式原油动用规律实验研究[J]. CT理论与应用研究, 2016, 25(6): 647-652.
[23] PAN Weiyi, LANG Dongjiang, LUN Zengmin, et al. Experimental study of effective displacement characteristics of different displacing methods in tight oil reservoir[J]. Computerized Tomography Theory and Applications, 2016, 25(6): 647-652.
[24] 贾利春, 李柱正, 陈丽萍. 基于有效应力的裂缝性碳酸盐岩地层孔隙压力预测[J]. 钻采工艺, 2023, 46(5): 93-99.
[24] JIA Lichun, LI Zhuzheng, CHEN Liping. Pore pressure prediction of fractured carbonate formation in central Sichuan Based on effective stress principle[J]. Drilling & Production Technology, 2023, 46(5): 93-99.
[25] 刘秀婵, 陈西泮, 刘伟, 等. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏, 2019, 31(5): 114-120.
[25] LIU Xiuchan, CHEN Xipan, LIU Wei, et al. Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application[J]. Lithologic Reservoirs, 2019, 31(5): 114-120.
[26] WANG J, LIU H Q, XIA J, et al. Mechanism simulation of oil displacement by imbibition in fractured reservoirs[J]. Petroleum Exploration and Development, 2017, 44(5): 805-814.
[27] 宋书伶, 杨二龙, 沙明宇. 基于分子模拟的页岩油赋存状态影响因素研究[J]. 油气藏评价与开发, 2023, 13(1): 31-38.
[27] SONG Shuling, YANG Erlong, SHA Mingyu. Influencing factors of occurrence state of shale oil based on molecular simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 31-38.
[28] CUI P Z, ZHANG H, MA Y G, et al. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity[J]. Chemical Physics Letters, 2017, 685: 294-299.
[29] 吴浩, 张春林, 纪友亮, 等. 致密砂岩孔喉大小表征及对储层物性的控制——以鄂尔多斯盆地陇东地区延长组为例[J]. 石油学报, 2017, 38(8): 876-887.
[29] WU Hao, ZHANG Chunlin, JI Youliang, et al. Pore-throat size characterization of tight sandstone and its control on reservoir physical properties: A case study of Yanchang Formation,eastern Gansu, Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 876-887.
[30] 朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016, 37(11): 1323-1336.
[30] ZHU Rukai, WU Songtao, SU Ling, et al. Problems and future works of works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016, 37(11): 1323-1336.
[31] 肖鄂, 程妮, 王政杰, 等. 靖边油田新城区块延9油层组储层非均质性特征[J]. 石油地质与工程, 2023, 37(6): 15-20.
[31] XIAO E, CHENG Ni, WANG Zhengjie, et al. Reservoir heterogeneity characteristics of Yan9 oil formation in Xincheng Block, Jingbian Oilfield[J]. Petroleum Geology & Engineering, 2023, 37(6): 15-20.
[32] 刘子雄, 李啸南, 李凡, 等. 基于微观结构的致密气储层分级评价方法研究[J]. 石油地质与工程, 2023, 37(5): 50-55.
[32] LIU Zixiong, LI Xiaonan, LI Fan, et al. Classification and evaluation of tight gas reservoirs based on micro-structure[J]. Petroleum Geology & Engineering, 2023, 37(5): 50-55.
[33] 彭紫燕, 谢斐, 王炜肖, 等. 页岩储层压裂裂缝形态描述及流动模拟方法研究现状[J]. 石油地质与工程, 2023, 37(5): 120-126.
[33] PENG Ziyan, XIE Pei, WANG Weixiao, et al. Research status of fracture morphology description and flow simulation method in shale reservoirs[J]. Petroleum Geology & Engineering, 2023, 37(5): 120-126.
[34] 陈满, 常程, 岳文瀚, 等. 四川长宁地区页岩气水平井压后返排潜力评估[J]. 石油地质与工程, 2023, 37(6): 63-67.
[34] CHENG Man, CHANG Cheng, YUE Wenhan, et al. Evaluation of flowback potential for shale gas horizontal wells after pressure in Changing area, Sichuan Province[J]. Petroleum Geology & Engineering, 2023, 37(6): 63-67.
[35] 魏海峰. 非均质性页岩水力压裂裂缝扩展形态研究进展[J]. 油气地质与采收率, 2023, 30(4): 156-166.
[35] WEI Haifeng. Research progress on fracture propagation patterns of hydraulic fracturing in heterogeneous shale[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 156-166.
[36] 赵圣贤, 夏自强, 刘文平, 等. 四川盆地南部泸203井区五峰组—龙马溪组页岩裂缝特征及形成演化[J]. 油气地质与采收率, 2022, 29(5): 28-38.
[36] ZHAO Shengxian, XIA Ziqiang, LIU Wenping, et al. Fracture characteristics and evolution of Wufeng-Longmaxi Formation shale in Lu203 well area in southern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 28-38.
Outlines

/