Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 3: 333 - 342
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.03.003
Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin
Received date: 2024-01-29
Online published: 2024-07-10
Shale oil reservoirs present complex pore structures and ultra-low permeability, making the evaluation of flow capacity in both the reservoir matrix and various fracture types after fracturing crucial for developing effective work systems. In this study, the Brazilian splitting method was utilized to simulate different fracture morphologies. We constructed a set of methods for evaluating matrix and fracture flow capacity based on nuclear magnetic resonance(NMR)technology. This evaluation was conducted on shale cores from the second member of Funing Formation of Gaoyou Sag in Subei Basin(referred to as the Fu-2 member). Techniques including NMR, Brazilian fracturing, and high-pressure saturation were applied to develop these evaluation methods. The experimental results indicate that the minimum flow pore size of the shale reservoirs is 10 nm. Under stress conditions, the flow pattern exhibits a two-stage equation: nonlinear and linear. Factors affecting the fracture system’s conductivity include crack type, opening degree, stress magnitude, and driving pressure difference. Higher stress levels result in greater permeability loss, reaching up to 95%. The more complex the fracture network and the larger the opening, the greater the permeability loss. During production, it is essential to manage the pressure difference between the formation fluid and the bottomhole flow based on the crack development and effective stress characteristics of the overlying strata to ensure stable oil well production and uniform pressure propagation. For the shale oil in Fu-2 member of Gaoyou Sag, it is recommended to maintain an effective stress range of 7 MPa to 10 MPa and a flow pressure difference range of 10 MPa to 15 MPa as optimal for pumping or reservoir energy replenishment. These research findings significantly contribute to the theoretical understanding and practical application of the shale seepage mechanism.
Hongliang DUAN , Tingshan SHEN , Jing SUN , Yafei HONG , Sichen LI , Xianrong LU , Zhengyang ZHANG . Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(3) : 333 -342 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.03.003
[1] | 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. |
[1] | ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. |
[2] | 孙龙德, 刘合, 朱如凯, 等. 中国页岩油革命值得关注的十个问题[J]. 石油学报, 2023, 44(12): 2007-2019. |
[2] | SUN Longde, LIU He, ZHU Rukai, et al. Ten noteworthy issues on shale oil revolution in China[J]. Acta Petrolei Sinica, 2023, 44(12): 2007-2019. |
[3] | 董明哲, 李亚军, 桑茜, 等. 页岩油流动的储层条件和机理[J]. 石油与天然气地质, 2019, 40(3): 636-644. |
[3] | DONG Mingzhe, LI Yajun, SANG Qian, et al. Reservoir conditions and mechanism of shale oil flow[J]. Oil & Gas Geology, 2019, 40(3): 636-644. |
[4] | 宋书伶, 杨二龙, 沙明宇. 基于分子模拟的页岩油赋存状态影响因素研究[J]. 油气藏评价与开发, 2023, 13(1): 31-38. |
[4] | SONG Shuling, YANG Erlong, SHA Mingyu. Influencing factors of occurrence state of shale oil based on molecular simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 31-38. |
[5] | 曹小朋. 页岩油储层微观特征分析与流动模拟[J]. 深圳大学学报(理工版), 2021, 38(6): 605-612. |
[5] | CAO Xiaopeng. Microscopic characteristics analysis and flow simulation of shale oil reservoir[J]. Journal of Shenzhen University(Science & Engineering), 2021, 38(6): 605-612. |
[6] | 苏玉亮, 王瀚, 詹世远, 等. 页岩油微尺度流动表征及模拟研究进展[J]. 深圳大学学报(理工版), 2021, 38(6): 579-589. |
[6] | SU Yuliang, WANG Han, ZHAN Shiyuan, et al. Research progress on characterization and simulation of shale oil flow in microscale[J]. Journal of Shenzhen University(Science & Engineering), 2021, 38(6): 579-589. |
[7] | 方志雄, 肖秋生, 张殿伟, 等. 苏北盆地陆相“断块型”页岩油地质特征及勘探实践[J]. 石油与天然气地质, 2023, 44(6): 1468-1478. |
[7] | FANG Zhixiong, XIAO Qiusheng, ZHANG Dianwei, et al. Geological characteristics and exploration of continental fault-block shale oil reservoirs in the Subei Basin[J]. Oil & Gas Geology, 2023, 44(6): 1468-1478. |
[8] | 肖阳, 王家豪, 李志刚, 等. 基于大数据的页岩油区块产量差异分析方法研究[J]. 钻采工艺, 2022, 45(3): 73-78. |
[8] | XIAO Yang, WANG Jiahao, LI Zhigang, et al. Study on production difference analysis method of shale oil play based on big data[J]. Drilling & Production Technology, 2022, 45(3): 73-78. |
[9] | 梁宏儒. 致密油储层微观孔喉表征及渗流机理研究[D]. 青岛: 中国石油大学(华东), 2016. |
[9] | LIANG Hongru. Micro characterization of pore-throat structural and studies of percolation mechanisms of tight oil reservoirs[D]. Qingdao: China University of Petroleum(East China), 2016. |
[10] | 赵国翔, 姚约东, 王链, 等. 页岩油藏微尺度流动特征及应力敏感性分析[J]. 断块油气田, 2021, 28(2): 247-252. |
[10] | ZHAO Guoxiang, YAO Yuedong, WANG Lian, et al. Microscale transport behaviors of shale oil and stress sensitivity analysis[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 247-252. |
[11] | YAO Z Y, SUN J, LIU D H. Experimental study on the influence of fracturing fluid retention on shale gas diffusion law[J]. Energy Engineering, 2023, 120(8): 1854-1866. |
[12] | 李志明, 钱门辉, 黎茂稳, 等. 中-低成熟湖相富有机质泥页岩含油性及赋存形式——以渤海湾盆地渤南洼陷罗63井和义21井沙河街组一段为例[J]. 石油与天然气地质, 2017, 38(3): 448-456. |
[12] | LI Zhiming, QIAN Menhui, LI Maowen, et al. Oil content and occurrence in low-medium mature organic-rich lacustrine shales:A case from the 1st member of the Eocene-Oligocene Shahejie Formation in Well Luo-63 and Yi-21, Bonan Subsag, Bohai Bay Basin[J]. Oil & Gas Geology, 2017, 38(3): 448-456. |
[13] | 李武广, 钟兵, 杨洪志, 等. 页岩储层基质气体扩散能力评价新方法[J]. 石油学报, 2016, 37(1): 88-96. |
[13] | LI Wuguang, ZHONG Bing, YANG Hongzhi, et al. A new method for gas diffusivity evaluation in matrix rocks of shale reservoir[J]. Acta Petrolei Sinica, 2016, 37(1): 88-96. |
[14] | 亓倩, 朱维耀, 邓佳, 等. 含微裂缝页岩储层渗流模型及压裂井产能[J]. 工程科学学报, 2016, 38(3): 306-313. |
[14] | QI Qian, ZHU Weiyao, DENG Jia, et al. Seepage model and productivity prediction of fractured wells in shale gas reservoirs with discontinuous micro-fractures[J]. Chinese Journal of Engineering, 2016, 38(3): 306-313. |
[15] | 胡辉庭, 马勇, 张遂安, 等. 页岩裂缝和基质渗透率各向异性特征及影响因素[J]. 科学技术与工程, 2023, 23(24): 10252-10263. |
[15] | HU Huiting, MA Yong, ZHANG Sui’an, et al. Anisotropy and influencing factors of shale fracture and matrix permeability[J]. Science Technology and Engineering, 2023, 23(24): 10252-10263. |
[16] | 卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322. |
[16] | LU Shuangfang, XUE Haitao, WANG Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322. |
[17] | 王茂林, 程鹏, 田辉, 等. 页岩油储层评价指标体系[J]. 地球化学, 2017, 46(2): 178-190. |
[17] | WANG Maolin, CHENG Peng, TIAN Hui, et al. Evaluation index system of shale oil reservoirs[J]. Geochimica, 2017, 46(2): 178-190. |
[18] | 王晓明, 陈军斌, 任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望[J]. 油气藏评价与开发, 2023, 13(1): 23-30. |
[18] | WANG Xiaoming, CHEN Junbin, REN Dazhong. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 23-30. |
[19] | 何海燕, 刘先山, 耿少阳, 等. 基于渗流-温度双场耦合的油藏型储气库数值模拟[J]. 油气藏评价与开发, 2023, 13(6): 819-826. |
[19] | HE Haiyan, LIU Xianshan, GENG Shaoyang, et al. Numerical simulation of UGS facilities rebuilt from oil reservoirs based on the coupling of seepage and temperature fields[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 819-826. |
[20] | 汪伟英, 喻高明, 柯文丽, 等. 稠油非线性渗流测定方法研究[J]. 石油实验地质, 2013, 35(4): 464-467. |
[20] | WANG Weiying, YU Gaoming, KE Wenli, et al. Experimental study of nonlinear seepage for heavy oil[J]. Petroleum Geology and Experiment, 2013, 35(4): 464-467. |
[21] | 邸德家, 李俊鹿, 吴锦伟, 等. 致密油水平井产出剖面测试技术分析及应用[J]. 钻采工艺, 2023, 46(6): 79-84. |
[21] | DI Dejia, LI Junlu, WU Jinwei, et al. Analysis and application of production profile testing technology in tight oil horizontal well[J]. Drilling and Production Technology, 2023, 46(6): 79-84. |
[22] | YU H Y, XU H, FU W R, et al. Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure[J]. Fuel, 2021, 285: 118977. |
[23] | YU W, LASHGARI H R, WU K, et al. CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs[J]. Fuel, 2015, 159: 354-363. |
[24] | 王巧智, 江安, 苏延辉, 等. 用CT扫描技术分析致密砂岩储层应力敏感性[J]. 钻采工艺, 2022, 45(4): 56-60. |
[24] | WANG Qiaozhi, JIANG An, SU Yanhui, et al. Stress sensitivity analysis for tight sandstone reservoir by CT scanning technology[J]. Drilling & Production Technology, 2022, 45(4): 56-60. |
[25] | LI S C, SUN J, LIU D H, et al. A new method for shale oil injecting-stewing-producing physical modeling experiments based on nuclear magnetic resonance[J]. Energies, 2024, 17: 694. |
[26] | 张琴, 刘畅, 梅啸寒, 等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质, 2015, 36(4): 666-674. |
[26] | ZHANG Qin, LIU Chang, MEI Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology, 2015, 36(4): 666-674. |
[27] | 朱德顺. 陆相湖盆页岩油富集影响因素及综合评价方法——以东营凹陷和沾化凹陷为例[J]. 新疆石油地质, 2019, 40(3): 269-275. |
[27] | ZHU Deshun. Influencing factor analysis and comprehensive evaluation method of lacustrine shale oil: Cases from Dongying and Zhanhua Sags[J]. Xinjiang Petroleum Geology, 2019, 40(3): 269-275. |
[28] | 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. |
[28] | JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology and Experiment, 2016, 38(6): 842-849. |
/
〈 | 〉 |