Methodology and Theory

Phase behavior and development characteristics of shale condensate gas in confined space

  • Yong TANG ,
  • Kun CHEN ,
  • Xiaohu HU ,
  • Sidong FANG ,
  • Hua LIU
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. State Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Effective Development, Beijing 100083, China
    3. Sinopec Petroleum Exploration and Development Research Institute, Beijing 100083, China

Received date: 2023-07-17

  Online published: 2024-07-10

Abstract

The exploration of Well-Fuye-10 in the Dongyuemiao section has provided valuable characteristic parameters of typical continental shale, revealing a reservoir with well-developed mesopores and macropores and significant heterogeneity. The predominant pore sizes are around 10 nm. Notably, deviations in the critical parameters of the confined fluids alter the condensate gas properties within these nanopores, differentiating them from conventional laboratory results. This study combines indoor phase state experiments, critical parameter migration calculations, and numerical simulations of confined fluids to analyze the phase state characteristics and extraction properties of shale condensate gas. The findings elucidate the phase state transformation and extraction dynamics of the condensate gas. Adjustments in the calculations for condensate gas phase characteristics to account for critical parameter offsets indicate that as pore radius decreases, there is a corresponding reduction in critical temperature and pressure of the system components. This results in a contraction of the phase diagram towards the lower left, a decrease in dew point pressure, reduced gas phase viscosity, an increase in deviation factor, and a gradual decrease in retrograde condensate saturation. Additionally, a mechanism model was employed to assess the impact of critical parameter shifts on depletion extraction effectiveness. Results demonstrate that while the recovery rate of natural gas remains relatively unchanged, the recovery rate of condensate oil shows a significant increase, rising by 9.93% as the pore radius decreases to 10 nm. These insights offer pivotal guidance for the development of shale condensate gas reservoirs, particularly in managing the unique phase behavior and optimizing recovery strategies.

Cite this article

Yong TANG , Kun CHEN , Xiaohu HU , Sidong FANG , Hua LIU . Phase behavior and development characteristics of shale condensate gas in confined space[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(3) : 343 -351 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.03.004

References

[1] 王红岩, 周尚文, 赵群, 等. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441.
[1] WANG Hongyan, ZHOU Shangwen, ZHAO Qun, et al. Enrichment characteristics,exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1430-1441.
[2] WANG Q, CHEN X, JHA A N, et al. Natural gas from shale formation: The evolution, evidences and challenges of shale gas revolution in United States[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 1-28.
[3] 朱维耀, 岳明, 刘昀枫, 等. 中国致密油藏开发理论研究进展[J]. 工程科学学报, 2019, 41(9): 1103-1114.
[3] ZHU Weiyao, YUE Ming, LIU Yunfeng, et al. Research progress on tight oil exploration in China[J]. Chinese Journal of Engineering, 2019, 41(9): 1103-1114.
[4] ISMAIL M I A, HORNE R N. An Investigation of Gas-Condensate Flow in Liquid-Rich Shales[C]// Paper SPE-169021-MS presented at the SPE Unconventional Resources Conference, The Woodlands, Texas, USA, April 2014.
[5] 孙焕泉, 周德华, 蔡勋育, 等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探, 2020, 25(2): 14-26.
[5] SUN Huanquan, ZHOU Dehua, CAI Xunyu, et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration, 2020, 25(2): 14-26.
[6] 胡德高, 舒志国, 郭战峰, 等. 川东复兴地区侏罗系(涪页10HF井)发现国内首个页岩凝析气藏[J]. 中国地质, 2021, 48(6): 1980-1981.
[6] HU Degao, SHU Zhiguo, GUO Zhanfeng, et al. Discovery of the first shale condensate gas reservoir in Jurassic strata in the Fuxin area, eastern Sichuan[J]. Geology in China, 2021, 48(6): 1980-1981.
[7] 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37.
[7] GUO Xusheng, HU Dongfeng, WEI Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37.
[8] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1): 1-6.
[8] WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6.
[9] 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855.
[9] MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855.
[10] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10.
[10] JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
[11] 聂海宽, 张柏桥, 刘光祥, 等. 四川盆地五峰组-龙马溪组页岩气高产地质原因及启示——以涪陵页岩气田JY6-2HF为例[J]. 石油与天然气地质, 2020, 41(3): 463-473.
[11] NIE Haikuan, ZHANG Baiqiao, LIU Guangxiang, et al. Geological factors contributing to high shale gas yield in the Wufeng-Longmaxi Fms of Sichuan Basin: A case study of Well JY6-2HF in Fuling shale gas field[J]. Oil & Gas Geology, 2020, 41(3): 463-473.
[12] 阎庆来, 何秋轩, 刘易非. 凝析油气在多孔介质中的相变特征[J]. 西安石油大学学报(自然科学版), 1988, 3(2): 15-22.
[12] YAN Qinglai, HE Qiuxuan, LIU Yifei. Phase transition characteristics of condensate oil and gas in porous media[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 1988, 3(2): 15-22.
[13] 朱维耀, 黄延章. 多孔介质对气-液相变过程的影响[J]. 石油勘探与开发, 1988, (1): 55-59.
[13] ZHU Weiyao, HUANG Yanzhang. The effect of porous media on gas-liquid phase behavior[J]. Petroleum Exploration and Development 1988, (1): 55-59.
[14] 何江川, 李士伦. 凝析气藏真实露点的探讨[J]. 天然气工业, 1995, 15(4): 22-26.
[14] HE Jiangchuan, LI Shilun. Exploration of the true dew point of condensate gas reservoirs[J]. Natural Gas Industry, 1995, 15(4): 22-26.
[15] 童敏, 李相方, 胡永乐, 等. 多孔介质对凝析气相态的影响[J]. 石油大学学报:自然科学版, 2004, 28(5): 61-64.
[15] TONG Ming, LI Xiangfang, HU Yongle, et al. Experimental study on influence of porous media on phase behavior of gas condensate[J]. Journal of China University of Petroleum(Edition of Natural Science), 2004, 28(5): 61-64.
[16] 王志伟, 李相方, 程时清, 等. 多孔介质凝析气相变的影响因素[J]. 天然气工业, 2006, 26(1): 90-92.
[16] WANG Zhiwei, LI Xiangfang, CHENG Shiqing, et al. Influential factors on phase change of condensate gas in porous media[J]. Natural Gas Industry, 2006, 26(1): 90-92.
[17] LONG K J, TANG Y, HE Y W, et al. Fluid phase behavior during multi-cycle injection and production of underground gas storage based on gas-condensate reservoirs with oil rim[J]. Geoenergy Science and Engineering, 2023, 226: 211769.
[18] 汤勇, 龙科吉, 王皆明, 等. 凝析气藏型储气库多周期注采过程中流体相态变化特征[J]. 石油勘探与开发, 2021, 48(2): 337-346.
[18] TANG Yong, LONG Keji, WANG Jieming, et al. Change of phase state during multi-cycle injection and production process of condensate gas reservoir based underground gas storage[J]. Petroleum Exploration and Development, 2021, 48(2): 337-346.
[19] 郭平, 孙良田. 多孔介质毛细管压力对凝析油气相态影响研究[J]. 石油勘探与开发, 1994, 21(4): 64-69.
[19] GUO Ping, SHUN Liangtian. Study on the effect of capillary pressure on condensate gas phase state in porous media[J]. Petroleum Exploration and Development, 1994, 21(4): 64-69.
[20] 杜建芬, 李士伦, 孙雷, 等. 多孔介质毛细凝聚对凝析气藏露点的影响研究[J]. 天然气工业, 2001, 21(3): 56-59.
[20] DU Jianfen, LI Shilun, SUN Lei, et al. influence of the capillary agglomeration in porous media on the dew point of condensate gas reservoir[J]. Natural Gas Industry, 2001, 21(3): 56-59.
[21] 杜建芬. 多孔介质中凝析油气体系相平衡规律和渗流规律研究[D]. 成都: 西南石油学院(南充), 1997.
[21] DU Jianfen. Study on phase equilibrium law and seepage law of condensate and gas system in porous media[D]. Chengdu: Southwest Petroleum Institute(Nanchong), 1997.
[22] KAMARI A, LI L, SHENG J J. Effects of rock pore sizes on the PVT properties of oil and gas-condensates in shale and tight reservoirs[J]. Petroleum, 2018, 4(2): 148-157.
[23] SONG Z J, SONG Y L, GUO J, et al. Adsorption induced critical shifts of confined fluids in shale nanopores[J]. Chemical Engineering Journal, 2019, 385: 123837.
[24] 王奥, 李菊花, 郑斌. 多孔介质中凝析气相态特征[J]. 大庆石油地质与开发, 2021, 40(1): 61-67.
[24] WANG Ao, LI Juhua, ZHENG Bin. Study on the phase behaviors of the condensate gas in porous media[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(1): 61-67.
[25] BITSANIS I, MAGDA J, TIRRELL M, et al. Molecular dynamics of flow in micropores[J]. Journal of Chemical Physics, 1987, 87(3): 1733-1750.
[26] VANFERLICK T, SCRIVEN L, DAVIS H. Molecular theories of confined fluids[J]. Journal of Chemical Physics, 1989, 90(4): 2422-2436.
[27] 王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452.
[27] WANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1442-1452.
[28] NAJEEB S A, TADESSE W W T, THANH N N, et al. Nanopore Compositional Modeling in Unconventional Shale Reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(3): 415-428.
[29] WAN T, MU Z J. The use of numerical simulation to investigate the enhanced Eagle Ford shale gas condensate well recovery using cyclic CO2 injection method with nano-pore effect[J]. Fuel, 2018, 233: 123-132.
[30] ZARRAGOICOECHEA G J, KUZ V A. Van der Waals equation of state for a fluid in a nanopore[J]. Physical Review. E-Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(2 Pt 1): 021110.
[31] ZARRAGOICOECHEA G J, KUZ V A. Critical shift of a confined fluid in a nanopore[J]. Fluid Phase Equilibria, 2004, 220(1): 7-9.
Outlines

/