Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 3: 391 - 401
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.03.009
Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing
Received date: 2023-06-13
Online published: 2024-07-10
This study addresses the challenges presented by the reservoirs in He-8 member in SD block of Ordos Basin, characterized by low porosity, low permeability, strong heterogeneity, and conventional fracturing fracture shapes. Utilizing fracture mechanics, this research examines the interactions between temporarily blocked fractures and the initial fracture throughout their entire contact period. Key considerations include fluid pressure drop within the fracture and the rock mechanics parameters of the reservoirs in He-8 member. The study systematically analyzes the influence of various parameters such as fracture strike, well deviation angle, and azimuth angle on fracturing fracture parameters. Notable findings include: Fracturing pressure decreases with increasing well deviation angle and azimuth angle. The initiation angle diminishes as well inclination increases, reaching a nadir before decreasing further with azimuth angle adjustments. Using artificial cement samples and a large-scale experimental system with realistic triaxial physical models, the study simulates the initiation, turning, and propagation behaviors of new fractures in temporary plugging fracturing. The behaviors of initiation, steering and extension of newly formed fractures at different well inclination and azimuth angles were evaluated along with the parameters such as fracture initiation pressure and fracture stimulated area. The experimental results reveal: Both initial and secondary fracture pressures tend to decrease as well inclination increases, making fractures more prone to turning and significantly enlarging the modifiable area. With consistent trap inclination, fracture initiation pressure decreases and the fracture modification area expands as bore azimuth increases. Fractures resulting from azimuthal 90° spiral perforation exhibit greater complexity compared to those from azimuthal 0° spiral perforation. Additionally, fixed surface perforation techniques can regulate fracture pressure and the initial fracture positions in horizontal wells, recommending a perforation angle between 75° and 90°. These findings offer valuable insights for the design of temporary plugs and fracturing strategies in low-permeability tight sandstone oil and gas reservoirs.
Xiangwei KONG , Hongxing XU , Xian SHI , Hang CHEN . Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(3) : 391 -401 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.03.009
[1] | 张国生, 赵文智, 杨涛, 等. 我国致密砂岩气资源潜力、分布与未来发展地位[J]. 中国工程科学, 2012, 14(6): 87-93. |
[1] | ZHANG Guosheng, ZHAO Wenzhi, YANG Tao, et al. Resource evaluation, position and distribution of tight sandstone gas in China[J]. Chinese Engineering Science, 2012, 14(6): 87-93. |
[2] | 刘晓鹏, 刘燕, 陈娟萍, 等. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234. |
[2] | LIU Xiaopeng, LIU Yan, CHEN Juanping, et al. Characteristics of micro pore structure and seepage in tight sandstone gas reservoir of the 8th section of Shihezi Formation in Ordos Basin, China[J]. Natural Gas Geoscience, 2016, 27(7): 1225-1234. |
[3] | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. |
[3] | LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. |
[4] | 张凤琼, 肖晖, 陈依, 等. 川东地区凉高山组致密砂岩压裂工艺优选研究[J]. 非常规油气, 2023, 10(4): 117-125. |
[4] | ZHANG Fengqiong, XIAO Hui, CHEN Yi, et al. Study on fracturing technology optimization of tight sandstone in Lianggaoshan Formation in eastern Sichuan area[J]. Unconventional Oil & Gas, 2023, 10(4): 117-125. |
[5] | LINDSAY G J, WHITE D J, MILLER G A, et al. Understanding the applicability and economic viability of refracturing horizontal wells in unconventional plays[C]// Paper SPE-179113-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2016. |
[6] | BARREE R D, MISKIMINS J L, SVATEK K J. Reservoir and completion considerations for the refracturing of horizontal wells[J]. SPE Production & Operations, 2018, 33(1): 1-11. |
[7] | GOEHTZ F, EVERS S C, PROMMERSBERGER K J. Re-fracture of the distal radius with lying palmar plate[J]. Handchirurgie, Mikrochirugie, Plastische Chirurgie, 2020, 52(3): 218-219. |
[8] | NOLAN E K, CHEN H Y. A comparison of the Cox model to the Fine-Gray model for survival analyses of re-fracture rates[J]. Archives of Osteoporosis, 2020, 15: 1-8. |
[9] | ARTUN E, KULGA B. Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development, 2020, 47(2): 413-420. |
[10] | SINGH A, BIERRUM W R N, WORMALD J C R, et al. Non-operative versus operative management of open fractures in the paediatric population: A systematic review and meta-analysis of the adverse outcomes[J]. Injury, 2020, 51(7): 1477-1488. |
[11] | MENG L D, ZHANG X L, JIN Y J, et al. Numerical simulation of fracture temperature field distribution during oil and gas reservoir hydraulic fracturing based on unsteady wellbore temperature field model[J]. Geophysics, 2023, 89(1): 1-15. |
[12] | SHAMMAM F O, ALKINANI H H, AL-HAMEEDI A T, et al. Assessment of the production gain from refractured wells in the major shale plays in the United States[C]// Paper ARMA-2021-1431 presented at the 55th US Rock Mechanics/Geomechanics Symposium, Virtual, June 2021. |
[13] | ZHANG J J, WHITE M, McEWEN J, et al. Investigating near-wellbore diversion methods for refracturing horizontal wells[J]. SPE Production & Operations, 2020, 35(4): 836-851. |
[14] | 张广清, 陈勉. 定向射孔水力压裂复杂裂缝形态[J]. 石油勘探与开发, 2009, 13(1): 1121-1135. |
[14] | ZHANG Guangqing, CHEN Mian. Complex fracture shapes in hydraulic fracturing with orientated perforations[J]. Petroleum Exploration and Development, 2009, 13(1): 1121-1135. |
[15] | 姜浒, 陈勉, 张广清, 等. 定向射孔对水力裂缝起裂与延伸的影响[J]. 岩石力学与工程学报, 2009, 28(7): 1321-1326. |
[15] | JIANG Hu, CHEN Mian, ZHANG Guangqing, et al. Impact of oriented perforation on hydraulic fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1321-1326. |
[16] | 朱海燕, 邓金根, 刘书杰, 等. 定向射孔水力压裂起裂压力的预测模型[J]. 石油学报, 2013, 34(3): 556-562. |
[16] | ZHU Haiyan, DENG Jingen, LIU Shujie, et al. A prediction model for the hydraulic fracture initiation pressure in oriented perforation[J]. Acta Petrolei Sinica, 2013, 34(3): 556-562. |
[17] | GUO T K, LIU B Y, QU Z Q, et al. Study on initiation mechanisms of hydraulic fracture guided by vertical multi-radial boreholes[J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1767-1785. |
[18] | 杨兆中, 李扬, 李小刚, 等. 气体水平井重复压裂关键技术进展及启示[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 75-86. |
[18] | YANG Zhaozhong, LI Yang, LI Xiaogang, et al. Key technology progress and enlightenment in fracturing of shale gas horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 75-86. |
[19] | 王艳玲. CCL油田老井重复压裂工艺技术研究[J]. 油气藏评价与开发, 2019, 9(6): 61-64. |
[19] | WANG Yanling. Repetitive fracturing technology for old wells in CCL oilfield[J]. Reservoir Evaluation and Development, 2019, 9(6): 61-64. |
[20] | ZHU X H, CHENG F L, SHI C S, et al. Mechanical plugging-solid expandable tubular refracturing technology[J]. Journal of Mechanical Science and Technology, 2020, 34: 2357-2364. |
[21] | 刘洪, 胡永全, 赵金洲, 等. 重复压裂气井诱导应力场模拟研究[J]. 岩石力学与工程学报, 2004, 23(23): 4022-4027. |
[21] | LIU Hong, HU Yongquan, ZHAO Jinzhou, et al. Simulation study of induced stress field in refracturing gas well[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(23): 4022-4027. |
[22] | 张广清, 陈勉, 姚飞, 等. 各向异性地层重复压裂最优时机及影响因素分析[J]. 石油学报, 2008, 29(6): 885-889. |
[22] | ZHANG Guangqing, CHEN Mian, YAO Fei, et al. Study on optimal re-fracturing timing in anisotropic formation and its influencing factors[J]. Acta Petroleoi Sinica, 2008, 29(6): 885-889. |
[23] | 何青琴, 杨永全, 何世明, 等. 低渗透油气田重复压裂诱导应力场模拟研究[J]. 天然气技术, 2010, 4(1): 30-33. |
[23] | HE Qingqin, YANG Yongquan, HE Shiming, et al. Refracturing-induced stress field simulation of low-permeability oil and gas fields[J]. Natural Gas Technology, 2010, 4(1): 30-33. |
[24] | 张广明, 熊春明, 刘合, 等. 复杂断块地应力场数值模拟方法研究[J]. 断块油气田, 2011, 18(6): 710-713. |
[24] | ZHANG Guangming, XIONG Chunming, LIU He, et al. Numerical simulation method for in-situ stress field in complex fault block[J]. Fault-Block Oil & Gas Field, 2011, 18(6): 710-713. |
[25] | 董光, 邓金根, 朱海燕, 等. 重复压裂前的地应力场分析[J]. 断块油气田, 2012, 19(4): 485-488. |
[25] | DONG Guang, DENG Jingen, ZHU Haiyan, et al. Analysis of stress field before refracture treatment[J]. Fault-Block Oil & Gas Field, 2012, 19(4): 485-488. |
[26] | 孔祥伟, 严仁田, 张思琦, 等. 真三轴大物模水力压裂裂缝起裂及扩展模拟实验[J]. 石油与天然气化工, 2023, 52(3): 97-102. |
[26] | KONG Xiangwei, YAN Rentian, ZHANG Siqi, et al. Simulation experimental study on fracture initiation and propagation of hydraulic fracturing with true triaxial large physical model[J]. Chemical Engineering of Oil &Gas, 2023, 52(3): 97-102. |
[27] | 雷洋洋, 王辉, 武鑫, 等. 砾岩致密油藏直井重复压裂裂缝形态分析[J]. 油气藏评价与开发, 2021, 11(5): 782-792. |
[27] | LEI Yangyang, WANG Hui, WU Xin, et al. Analysis of fracture geometry for refractured vertical wells in tight conglomerate reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 782-792. |
[28] | 候振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(2): 407-414. |
[28] | HOU Zhenkun, YANG Chunhe, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407-414. |
[29] | 侯冰, 陈勉, 程万, 等. 页岩气储层变排量压裂的造缝机制[J]. 岩土工程学报, 2014, 36(11): 2149-2152. |
[29] | HOU Bing, CHEN Mian, CHENG Wan, et al. Fracture mechanism on shale gas reservoir fracturing with variable pump rate[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2149-2152. |
[30] | 盛广龙, 鲁明晶. 真三轴重复压裂裂缝扩展实时监测教学演示实验研究[J]. 山东化工, 2021, 50(4): 211-213. |
[30] | SHENG Guanglong, LU Mingjing. Experimental research on real-time AE monitoring fracture propagation in true-triaxial refracturing treatment[J]. Shandong Chemical Industry, 2021, 50(4): 211-213. |
[31] | 孔祥伟, 严仁田, 许洪星, 等. 基于真三轴物理模拟多簇裂缝均衡起裂及延伸规律实验[J]. 天然气地球科学, 2023, 34(7): 1123-1136. |
[31] | KONG Xiangwei, YAN Rentian, XU Hongxing, et al. Experiment on equilibrium initiation and extension of multiple clusters of fractures based on true triaxial physical simulation[J]. Natural Gas Geoscience, 2023, 34(7): 1123-1136. |
[32] | 冯欣雨, 肖晖, 李泉辉, 等. 致密砂岩水力裂缝特征实验研究[J]. 非常规油气, 2023, 10(4): 132-138. |
[32] | FENG Xinyu, XIAO Hui, LI Quanhui, et al. Experimental study on hydraulic fracture characteristics of tight sandstone[J]. Unconventional Oil & Gas, 2023, 10(4): 132-138. |
[33] | 张旭, 蒋廷学, 贾长贵, 等. 页岩气储层水力压裂物理模拟试验研究[J]. 石油钻探技术, 2013, 41(2): 70-74. |
[33] | ZHANG Xu, JIANG Tingxue, JIA Changgui, et al. Physical simulation of hydraulic fracturing of shale gas reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70-74. |
[34] | 汪道兵, 周福建, 葛洪魁, 等. 纤维强制裂缝转向规律实验及现场试验[J]. 东北石油大学学报, 2016, 40(3): 80-88. |
[34] | WANG Daobing, ZHOU Fujian, GE Hongkui, et al. Experimental study on the fiber-based diverting fracturing technology of artificial fractures and its field application[J]. Journal of Northeast Petroleum University, 2016, 40(3): 80-88. |
[35] | 吴越, 侯冰, 韩慧芬, 等. 高水平应力差下水平井螺旋射孔参数优化研究[J]. 地下空间与工程学报, 2019, 15(1): 226-231. |
[35] | WU Yue, HOU Bing, HAN Huifen, et al. Study on the optimization of helical perforation parameters for horizontal wells in the condition of high horizontal stress difference[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(1): 226-231. |
[36] | 李越, 牟建业, 揭琼, 等. 碳酸盐岩缝内暂堵转向压裂裂缝扩展规律实验[J]. 石油钻采工艺, 2022, 44(2): 204-210. |
[36] | LI Yue, MOU Jianye, JIE Qiong, et al. Experimental study on fracture propagation during in-fracture temporary plugging and diverting fracturing in carbonate rock[J]. Oil Drilling & Production Technology, 2022, 44(2): 204-210. |
[37] | 马尚伟, 魏丽, 王一军, 等. 鄂尔多斯盆地南部盒 8 段致密砂岩储层微观孔隙结构表征与评价[J]. 地质与勘探, 2022, 58(6): 1321-1330. |
[37] | MA Shangwei, WEI Li, WANG Yijun, et al. Characterization and evaluation of microscopic pore structures of tight sandstone reservoir in the 8th member of Shihezi Formation in southern Ordos Basin[J]. Geology and Exploration, 2022, 58(6): 1321-1330. |
[38] | 赵金洲, 赵金, 胡永全, 等. 水力压裂裂缝应力场变化规律[J]. 天然气地球科学, 2019, 30(12): 1677-1683. |
[38] | ZHAO Jinzhou, ZHAO Jin, HU Yongquan, et al. Study on stress field distribution of hydraulic fracturing[J]. Natural Gas Geoscience, 2019, 30(12): 1677-1683. |
[39] | 蒲春生, 郑恒, 杨兆平, 等. 水平井分段体积压裂复杂裂缝形成机制研究现状与发展趋势[J]. 石油学报, 2020, 41(12): 1734-1743. |
[39] | PU Chunsheng, ZHENG Heng, YANG Zhaoping, et al. Research status and development trend of the formation mechanism of complex fractures by staged volume fracturing in horizontal wells[J]. Acta Petrolei Sinica, 2020, 41(12): 1734-1743. |
[40] | ENGLAND A H, GREEN A E. Some two-dimensional punch and crack problems in classical elasticity[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1963, 59(2): 489. |
[41] | 张滨海, 张朝举, 陈峥嵘, 等. 东海低渗储层压裂高起裂压力规律分析[J]. 应用力学学报, 2022, 39(2): 403-408. |
[41] | ZHANG Binhai, ZHANG Chaoju, CHEN Zhengrong, et al. Analysis of high fracturing initiation pressure in low permeability reservoirs in the East China Sea[J]. Chinese journal of applied mechanics, 2022, 39(2): 403-408. |
[42] | 罗天雨, 刘元爽. 应力诱导对压裂裂缝延伸的复杂影响研究[J]. 广东石油化工学院学报, 2019, 29(6): 10-15. |
[42] | LUO Tianyu, LIU Yuanshuang. Study on the complex influence of stress induction on fracture extension in fracturing[J]. Journal of Guangdong University of Petrochemical Technology, 2019, 29(6): 10-15. |
/
〈 | 〉 |