Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 4: 560 - 568
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.04.005
Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs
Received date: 2023-11-03
Online published: 2024-09-10
The shale gas reserves in the Wufeng Formation-Longmaxi Formation of the Luzhou Block in southern Sichuan are substantial. Tectonic movements alter the ground stress, significantly impacting the exploration and development of shale gas. To optimize exploration areas for deep shale, methods such as seismic comprehensive data, ancient structural maps, and rock mechanics parameter testing have been employed. Additionally, neural network algorithms and geological mechanics modeling analysis have been used to invert the stress field of ancient geological structures across multiple stages within the study area and to predict the development of reservoir fractures influenced by stress. The research indicates that numerical simulation methods and neural network algorithms effectively invert the crustal stress field across multiple stages. Tectonic movements have altered the crustal stress, concentrating it in the stratigraphic anticline. Here, the core of the anticline, affected by strong tectonic activity, is fractured, gradually releasing stress. The ongoing multi-stage tectonic movements have facilitated changes in the stress of the reservoir rock, making the fracture zone conducive to fault formation with decreasing stress over time. Around the original faults, crack development is pronounced, leading to stress attenuation zones prone to numerous, short, small cracks. The current stress field, shaped by multiple tectonic periods, presents a complex distribution and irregular crack development, significantly influencing shale gas drilling and development. These findings offer valuable insights for the exploration and development of deep shale gas.
Jiawei WANG , Bohu ZHANG , Yao HU , Zhengyi HE , Xinxin HU , Wei CHEN , Chao LUO . Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(4) : 560 -568 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.04.005
[1] | 周延豪, 兰志勤, 冯建伟, 等. 南堡地区多期构造应力叠加模拟及断裂演化研究[J]. 地质与勘探, 2018, 54(4): 772-780. |
[1] | ZHOU Yanhao, LAN Zhiqin, FENG Jianwei, et al. Simulation of multi-Phase tectonic stress superimposition and fault evolution in the Nanpu depression[J]. Geology and Exploration, 2018, 54(4): 772-780. |
[2] | 王福. 柴达木盆地诺木洪凹陷构造演化及有利区预测[J]. 石油地质与工程, 2022, 36(3): 13-19. |
[2] | WANG Fu. Technic evolution and favorable area prediction of Nomuhong sag in Qaidam Basin[J]. Petroleum Geology & Engineering, 2022, 36(3): 13-19. |
[3] | 于荣泽, 王成浩, 张晓伟, 等. 北美Eagle Ford深层页岩气藏开发特征及启示[J]. 煤田地质与勘探, 2022, 50(9): 32-41. |
[3] | YU Rongze, WANG Chenghao, ZHANG Xiaowei, et al. Development characteristics and enlightenment of Eagle Ford deep shale gas reservoirs in North America[J]. Coal Geology & Exploration, 2022, 50(9): 32-41. |
[4] | 王红岩, 刘德勋, 蔚远江, 等. 大面积高丰度海相页岩气富集理论及地质评价技术进展与应用[J]. 煤田地质与勘探, 2022, 50(3): 69-81. |
[4] | WANG Hongyan, LIU Dexun, YU Yuanjiang, et al. Enrichment theory of large area and high abundance marine shale gas and its geological evaluation technology progress and application[J]. Coal Geology & Exploration, 2022, 50(3): 69-81. |
[5] | 张玉亭. 煤层分层地应力预测模型研究[J]. 非常规油气, 2023, 10(2): 115-120. |
[5] | ZHANG Yuting. Prediction model study of coalbed layered in-situ stress[J]. Unconventional Oil & Gas, 2023, 10(2): 115-120. |
[6] | 常闯, 李松, 汤达祯, 等. 基于测井参数的煤储层地应力计算方法研究——以延川南区块为例[J]. 煤田地质与勘探, 2023, 51(5): 23-32. |
[6] | CHANG Chuang, LI Song, TANG Dazhen, et al. In-situ stress calculation for coal reservoirs based on log parameters: A case study of the southern Yanchuan block[J]. Coal Geology & Exploration, 2023, 51(5): 23-32. |
[7] | 侯明勋, 葛修润. 岩体初始地应力场分析方法研究[J]. 岩土力学, 2007, 28(8): 1626-1630. |
[7] | HOU Mingxun, GE Xiurun. Study on fitting analysis of initial stress field in rock masses[J]. Rock and Soil Mechanics, 2007, 28(8): 1626-1630. |
[8] | 佘成学, 熊文林, 陈胜宏. 边坡初始地应力场的应力函数与有限元联合反演法[J]. 武汉水利电力大学学报, 1995(4): 366-371. |
[8] | SHE Chengxue, XIONG Wenlin, CHEN Shenghong. The stress function and finite element joint inversion method of the initial in-situ stress field of the slope[J]. Engineering Journal of Wuhan University, 1995(4): 366-371. |
[9] | 赵雨, 白金朋. 基于FLAC3D的多元线性回归法地下厂房初始地应力场反演重构[J]. 水电能源科学, 2022, 40(3): 149-152. |
[9] | ZHAO Yu, BAI Jinpeng. Inversion of multiple linear regression analysis of initial stress field of underground powerhouse based on FLAC3D[J]. Water Resources and Power, 2022, 40(3): 149-152. |
[10] | 陈正林, 何国志, 张劼超, 等. 小样本数据下三维地应力反演分析[J]. 科学技术与工程, 2022, 22(22): 9822-9829. |
[10] | CHEN Zhenglin, HE Guozhi, ZHANG Jiechao, et al. Three-dimensional in-situ stress inversion analysis under small sample data[J]. Science Technology and Engineering, 2022, 22(22): 9822-9829. |
[11] | 曹文龙, 王雪彦. 基于GM模型的地下采区地应力反演分析[J]. 矿业研究与开发, 2019, 39(8): 87-91. |
[11] | CAO Wenlong, WANG Xueyan. Inversion analysis on ground stress in underground mining area based on GM model[J]. Mining research and development, 2019, 39(8): 87-91. |
[12] | 张斗中, 汤济广, 蔡俊. 渝东南川地区龙马溪组地应力场特征[J]. 油气藏评价与开发, 2021, 11(2): 56-62. |
[12] | ZHANG Douzhong, TANG Jiguang, CAI Jun. Characteristics of geostress field of Longmaxi Formation in Nanchuan area,Eastern Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(2): 56-62. |
[13] | 高伟中, 孙鹏, 田超, 等. 东海盆地西湖凹陷地应力场与油气运移关系探讨[J]. 油气藏评价与开发, 2015, 5(1): 1-6. |
[13] | GAO Weizhong, SUN Peng, TIAN Chao, et al. Relation between crustal stress field and hydrocarbon migration in West Lake sag, East China Sea Basin[J]. Petroleum Reservoir Evaluation and Development, 2015, 5(1): 1-6. |
[14] | 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169. |
[14] | MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169. |
[15] | 段洋, 李琴, 贾艳芬, 等. 北美非常规储层地应力预测技术发展现状与趋势[J]. 石油地质与工程, 2023, 37(2): 43-50. |
[15] | DUAN Yang, LI Qin, JIA Yanfen, et al. Development status and trend of in-situ stress prediction technology for unconventional reservoirs in North America[J]. Petroleum Geology & Engineering, 2023, 37(2): 43-50. |
[16] | 李彦伟, 朱超凡, 曾壹坚, 等. 层理特征对油页岩水力压裂裂缝扩展规律影响的数值模拟研究[J]. 煤田地质与勘探, 2023, 51(11): 44-54. |
[16] | LI Yanwei, ZHU Chaofan, ZENG Yijian, et al. Numerical simulations of the effects of bedding planes on hydraulic fracture propagation law in oil shale[J]. Coal Geology & Exploration, 2023, 51(11): 44-54. |
[17] | 曹晋璐, 刘之的, 何福文, 等. 鄂尔多斯盆地中东部太原组灰岩成藏地质条件分析[J]. 石油地质与工程, 2022, 36(2): 35-41. |
[17] | CAO Jinlu, LIU Zhide, HE Fuwen, et al. Analysis of limestone reservoir forming geological conditions of Taiyuan formation in central and eastern Ordos Basin[J]. Petroleum Geology & Engineering, 2022, 36(2): 35-41. |
[18] | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
[18] | DING Wenlong, LI Chao, LI Chunyan, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2): 212-220. |
[19] | 孙玮, 刘树根, 王国芝, 等. 川东南丁山构造震旦系—下古生界油气成藏条件及成藏过程[J]. 地质科技情报, 2010, 29(1): 49-55. |
[19] | SUN Wei, LIU Shugen, WANG Guozhi, et al. Petroleum formed condition and process research for Sinian to low paleozoic at Dingshan structure in southeast of Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2010, 29(1): 49-55. |
[20] | 覃作鹏, 刘树根, 邓宾, 等. 川东南构造带中新生代多期构造特征及演化[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 703-711. |
[20] | QIN Zuopeng, LIU Shugen, DENG Bin, et al. Multiphase structural features and evolution of Southeast Sichuan tectonic belt in China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(6): 703-711. |
[21] | HUANG H Y, HE D F, LI Y Q, et al. Silurian tectonic-sedimentary setting and basin evolution in the Sichuan area, southwest China: Implications for palaeogeographic reconstructions[J]. Marine & Petroleum Geology, 2018, 92: 403-423. |
[22] | 黄涵宇, 何登发, 李英强, 等. 四川盆地东南部泸州古隆起的厘定及其成因机制[J]. 地学前缘, 2019, 26(1): 102-120. |
[22] | HUANG Hanyu, HE Dengfa, LI Yingqiang, et al. Determination and formation mechanism of the Luzhou paleo-uplift in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2019, 26(1): 102-120. |
[23] | 朱传庆, 徐明, 单竞男, 等. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量[J]. 中国地质, 2009, 36(6): 1268-1277. |
[23] | ZHU Chuanqing, XU Ming, DAN Jingnan, et al. Quantifying the denudations of major tectonic events in Sichuan Basin:Constrained by the paleothermal records[J]. Geology in China, 2009, 36(6): 1268-1277. |
[24] | 魏力民, 王岩, 张天操, 等. 页岩气富集与高产主控因素—以川南地区五峰组—龙马溪组为例[J]. 断块油气田, 2020, 27(6): 700-704. |
[24] | WEI Limin, WANG Yan, ZHANG Tiancao, et al. Main control factors of enrichment and high production of shale gas: a case study of Wufeng-Longmaxi Formation in Southern Sichuan[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 700-704. |
[25] | 尹文韬, 陈伟, 余养里. 川南云锦地区三维构造平衡恢复的断裂体系研究[J]. 化工设计通讯, 2021, 47(11): 19-20. |
[25] | YIN Wentao, CHEN Wei, YU Yangli. Study on fault system of 3D structural balance restoration in Yunjin area, southern Sichuan[J]. Chemical Engineering Design Communications, 2021, 47(11): 19-20. |
[26] | 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. |
[26] | DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area, Southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1): 43-51. |
[27] | 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科技大学出版社, 2009. |
[27] | CHEN Yong, HUANG Tingfang, LIU Enru. Rock physics[M]. Hefei: China University of Science and Technology Press, 2009. |
[28] | ZHANG L Y, MA L C, ZHUO X Z, et al. Mesozoic-Cenozoic stress field magnitude in Sichuan Basin, China and its adjacent areas and the implication on shale gas reservoir: Determination by acoustic emission in rocks[J]. China Geology, 2020, 3(4): 591-601. |
[29] | 肖睿, 邓虎成, 彭先锋, 等. 基于古应力场模拟的多期区域构造裂缝分布预测评价技术——以中国泌阳凹陷安棚油田为例[J]. 科学技术与工程, 2015, 15(30): 97-105. |
[29] | XIAO Rui, DENG Hucheng, PENG Xianfeng, et al. The regional tectonic fracture distribution prediction technique of different generations based on the palaeostress field simulation——A case study from Anpeng Oil-field in Biyang Depresssion, China[J]. Science Technology and Engineering, 2015, 15(30): 97-105. |
[30] | 鲍洪志, 孙连环, 于玲玲, 等. 利用岩石声发射Kaiser效应求取地应力[J]. 断块油气田, 2009, 16(6): 94-96. |
[30] | BAO Hongzhi, SUN Lianhuan, YU Lingling, et al. Obtainment of ground stress by Kaiser effect of rock acoustic emission[J]. Fault-Block Oil & Gas Field, 2009, 16(6): 94-96. |
[31] | 王燕. 基于多元回归与神经网络耦合算法的地应力反演研究[D]. 成都: 西南石油大学, 2022. |
[31] | WANG Yan. Research on in-situ stress inversion based on multiple regression and neural network coupling algorithm[D]. Chengdu: Southwest Petroleum University, 2022. |
[32] | 马军. 页岩裂缝成因及其对含气性影响——以渝东南地区阳春沟构造带五峰组—龙马溪组为例[J]. 油气藏评价与开发, 2020, 10(3): 126-134. |
[32] | MA Jun. Origin of shale fractures and its influence on gas-bearing properties: A case study of Wufeng-Longmaxi Formation in Yangchungou structural belt in southeast Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(3): 126-134. |
[33] | 舒逸, 郑有恒, 包汉勇, 等. 四川盆地复兴地区下侏罗统页岩油气富集高产主控因素[J]. 世界石油工业, 2023, 30(5): 26-38. |
[33] | SHU Yi, ZHENG Youheng, BAO Hanyong, et al. Main controlling factors for high yield and enrichment of shale oil and gas in the Lower Jurassic in the Fuxing area of Sichuan Basin[J]. World Petroleum Industry, 2023, 30(5): 26-38. |
/
〈 | 〉 |