Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 5: 771 - 778
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.05.013
Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin
Received date: 2023-12-18
Online published: 2024-10-11
In the fracturing process of shale oil in Subei Basin, there has been a notable incompatibility between the oil displacement agent and the fracturing fluid. This issue leads to a reduction in the viscosity of the fracturing fluid and can even trigger chemical reactions that result in precipitation, adversely affecting both fracturing efficiency and productivity. To address this, a new fracturing-displacement agent(HDFD) has been developed specifically for shale oil. This agent is composed of maleic anhydride(C4H2O3), polyoxyethylene aliphatic alcohol ether(HO(CH2CH2O)m(CH2)nCH3), anionic polyacrylamide((C3H5ON)n), and white oil, produced through chemical synthesis and physical blending methods. In laboratory evaluations, the HDFD displayed an apparent viscosity of 9~12 mPa·s, a drag reduction rate of over 70%, an oil-water interfacial tension of 5×10-3 mN/m, and a 40% increase in oil displacement efficiency at a 2×10-3 kg/L concentration. Compared with the“drag reduction emulsion + high temperature oil displacement agent” system used in the field, these results suggest that HDFD performs exceptionally well in reducing drag in fracturing fluids and enhancing oil displacement. Field tests conducted on two wells using this agent showed a daily oil production increase of 40.6% and 84.6%, respectively. These outcomes confirm that HDFD is effective for use in the shale oil reservoir of the second member in Subei Basin and holds significant promise for future applications in integrated shale oil fracturing and displacement technologies.
WANG Weiheng , GUO Xin , ZHANG Bin , XIA Weiwei . Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(5) : 771 -778 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.013
[1] | 刘义坤, 王凤娇, 汪玉梅, 等. 中低渗透储集层压驱提高采收率机理[J]. 石油勘探与开发, 2022, 49(4): 752-759. |
LIU Yikun, WANG Fengjiao, WANG Yumei, et al. The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs[J]. Petroleum Exploration and Development, 2022, 49(4): 752-759. | |
[2] | 刘倩, 张金晶, 石华强, 等. 不同界面性质表面活性剂体系提高采收率作用效果和机理[J]. 油田化学, 2022, 39(4): 688-694. |
LIU Qian, ZHANG Jinjing, SHI Huaqiang, et al. Enhanced oil recovery effect and mechanism of surfactants with different interfacial property[J]. Oilfield Chemistry, 2022, 39(4): 688-694. | |
[3] | 刘柯, 范洪富, 闫飚, 等. 制低渗透油藏渗吸采油机理及技术进展[J]. 油田化学, 2023, 40(1): 182-190. |
LIU Ke, FAN Hongfu, YAN Biao, et al. Progress in mechanism and technology of imbibition recovery in low permeability reservoirs[J]. Oilfield Chemistry, 2023, 40(1): 182-190. | |
[4] | 郭建春, 马莅, 卢聪. 中国致密油藏压裂驱油技术进展及发展方向[J]. 石油学报, 2022, 43(12): 1788-1797. |
GUO Jianchun, MA Li, LU Cong. Progress and development directions of fracturing flooding technology for tight reservoirs in China[J]. Acta Petrolei Sinica, 2022, 43(12): 1788-1797. | |
[5] | 欧阳伟平, 张冕, 孙虎, 等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术, 2021, 49(4): 143-149. |
OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149. | |
[6] | 刘雨舟, 张志坚, 王磊, 等. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用[J]. 石油与天然气化工, 2022, 51(3): 76-81. |
LIU Yuzhou, ZHANG Zhijian, WANG Lei, et al. Research progress of variable viscosity slick water in China and its application in unconventional gas reservoirs in Sichuan and Chongqing[J]. Chemical Engineering of Oil and Gas, 2022, 51(3): 76-81. | |
[7] | 李平, 樊平天, 郝世彦, 等. 大液量大排量低砂比滑溜水分段压裂工艺应用实践[J]. 石油钻采工艺, 2019, 41(4): 534-540. |
LI Ping, FAN Pingtian, HAO Shiyan, et al. Application practice of the slick-water staged fracturing of massive fluid, high displacement and low sand concentration[J]. Oil Drilling & Production Technology, 2019, 41(4): 534-540. | |
[8] | 俞路遥, 许可, 方波, 等. 反相乳液聚合体系在油气田开发领域的应用进展[J]. 应用化工, 2022, 51(7): 2034-2039. |
YU Luyao, XU Ke, FANG Bo, et al. Application progress of inverse emulsion polymerization system in oil and gas field[J]. Applied Chemical Industry, 2022, 51(7): 2034-2039. | |
[9] | 麦尔耶姆古丽·安外尔, 蒲迪, 翟怀建, 等. 悬浮液基高效减阻携砂压裂液的研发与应用[J]. 油田化学, 2022, 39(3): 387-392. |
MAIERYEMUGULI Anwaier, PU Di, ZHAI Huaijian, et al. Development and application of fracturing fluid based suspension thickener with high efficient drag reduction and proppant transport[J]. Oilfield Chemistry, 2022, 39(3): 387-392. | |
[10] | 张志升. 适用于致密砂岩储层的多功能表面活性剂驱油压裂液体系[J]. 大庆石油地质与开发, 2020, 39(1): 169-174. |
ZHANG Zhisheng. Multifunction surfactant oil-displacing fracturing fluid system suitable for tight sandstone reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(1): 169-174. | |
[11] | 范华波, 薛小佳, 李楷, 等. 驱油型表面活性剂压裂液的研发与应用[J]. 石油与天然气化工, 2019, 48(1): 74-79. |
FAN Huabo, XUE Xiaojia, LI Kai, et al. Development and application of flooding surfactant fracturing fluid[J]. Chemical Engineering of Oil and Gas, 2019, 48(1): 74-79. | |
[12] | 李乐. 驱油压裂液的制备与性能评价[D]. 青岛: 中国石油大学(华东), 2017. |
LI Le. Compound and evaluated a new type of oil-displacement fracturing fluid[D]. Qingdao: China University of Petroleum(East China), 2017. | |
[13] | 严娇. 压裂-驱油一体化工作液研制与应用基础研究[D]. 西安: 西安石油大学, 2019. |
YAN Jiao. Fundamental research on development and application of fracturing-oil displacement integrated working fluid[D]. Xi'an: Xi'an Shiyou University, 2019. | |
[14] | 彭冲, 王晓飞, 付卜丹, 等. 渗吸置换型清洁压裂液技术研究[J]. 石油化工应用, 2020, 39(3): 33-36. |
PENG Chong, WANG Xiaofei, FU Bodan, et al. Study of imbibition oil displacement modle of clean fracturing fluid[J]. Petrochemical Industry Application, 2020, 39(3): 33-36. | |
[15] | BAI H, ZHOU F J, ZHANG M C, et al. Optimization and friction reduction study of a new type of viscoelastic slickwater system[J]. Journal of Molecular Liquids, 2021, 344(10): 117876. |
[16] | HLIDEK B, DUENCKEL R. High viscosity friction reducers-potential for fracture damage and impact of brines on proppant transport capability[C]// Paper 199736 presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, the Woodlands, Texas, USA, February 2022. |
[17] | 李佳, 陈明贵, 耿向飞, 等. 低界面张力活性纳米流体的研制与渗吸驱油机理分析[J]. 油田化学, 2021, 38(2): 284-290. |
LI Jia, CHEN Minggui, GEN Xiangfei, et al. Development of nano fluid with low interfacial tension and analysis of imbibition displacement mechanism[J]. Oilfield Chemistry, 2021, 38(2): 284-290. | |
[18] | 丁小惠, 周丹, 吴凯, 等. 纳米乳液渗吸驱油剂性能评价与应用[J]. 油田化学, 2022, 39(4): 651-657. |
DING Xiaohui, ZHOU Dan, WU Kai, et al. Performance evaluation and application of nanoemulsion imbibition oil-displacing agent[J]. Oilfield Chemistry, 2022, 39(4): 651-657. | |
[19] | 昝灵, 骆卫峰, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质, 2021, 43(2): 233-241. |
ZAN Lin, LUO Weifeng, YIN Yanling, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 233-241. | |
[20] | 荆晓明. 苏北盆地溱潼凹陷古近系阜二段页岩油甜点评价[J]. 非常规油气, 2023, 10(3): 31-38. |
JING Xiaoming. Evaluation of shale oil sweet spots in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Unconventional Oil & Gas, 2023, 10(3): 31-38. |
/
〈 | 〉 |