Comprehensive Research

Strategies and methods of 3D geological multi-level modeling for oilfields: A case study of an integrated oilfield, Gudao Oilfield, in Bohaiwan Basin

  • SHU Qinglin ,
  • WANG Yanan ,
  • HAN Zhiying ,
  • YAO Xiutian ,
  • XIA Jian ,
  • CHEN Yumao ,
  • LI Weizhong
Expand
  • 1. Sinopec Shengli Oilfield Company, Dongying, Shandong 257001, China
    2. Institute of Geophysical Prospecting, Sinopec Shengli Oilfield Company, Dongying, Shandong 257000, China
    3. Gudao Oil Production Plant, Sinopec Shengli Oilfield Company, Dongying, Shandong 257231, China
    4. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying, Shandong 257015, China

Received date: 2023-08-22

  Online published: 2024-10-11

Abstract

3D geological modeling is essential at every stage of oilfield exploration and development. The scale, precision, and requirements of modeling vary depending on the issues at hand. While zonal block geological modeling guides well location deployment and the analysis of well group development and adjustments, the absence of a unified standard for each independent block model hinders the integration of smaller models into larger ones. This limitation affects the overall exploration, development, and planning of the oilfield. To maximize the precision and guiding role of geological modeling throughout the entire lifecycle of an oilfield, this paper uses an integrated oilfield, Gudao Oilfield, in Bohaiwan Basin as a case study. It introduces a multi-stage modeling strategy that progresses from a monolithic oilfield to zonal blocks and finally to reservoir configurations(single sand bodies). These approach using geological modeling software, Direct and M3, with independent intellectual property rights and applying geostatistics and embedded reservoir configuration modeling with geological constraints to realize the transformation from macro to micro, whole to local, and general to detailed, providing an in-depth description of the oilfield’s structural and depositional characteristics, reservoir configurations, and spatial distribution of oil reservoirs. The 3D geological large-scale model and hierarchical model of the first multi-billion grid nodes of the oilfield in China are built. Such detailed modeling aids in deepening geological understanding, evaluating the potential of developed oil reservoirs, and locating remaining reserves, thereby ensuring the oilfield’s sustained and stable production. 3D geological multi-stage modeling technology not only facilitates multidisciplinary communication among petroleum professionals but also serves as a robust foundation for digital oilfield management. It represents an inevitable trend towards the development of digital and intelligent oilfields and offers significant guidance for oilfield exploration and development.

Cite this article

SHU Qinglin , WANG Yanan , HAN Zhiying , YAO Xiutian , XIA Jian , CHEN Yumao , LI Weizhong . Strategies and methods of 3D geological multi-level modeling for oilfields: A case study of an integrated oilfield, Gudao Oilfield, in Bohaiwan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(5) : 779 -787 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.014

References

[1] HOULDING S W. 3D geoscience modeling computer techniques for geological characterization[M]. Berlin: Springer-Verlag, 1994.
[2] 裘亦楠. 储层地质模型[J]. 石油学报, 1991, 12(4): 55-62.
  QIU Yinan. Geological models of petroleum reservoir[J]. Acta Petrolei Sinica, 1991, 12(4): 55-62.
[3] 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275.
  ZHANG Wenbiao, DUAN Taizhong, LIU Yanfeng, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 264-275.
[4] 李青元, 张洛宜, 曹代勇, 等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探, 2016, 52(4): 759-767.
  LI Qingyuan, ZHANG Luoyi, CAO Daiyong, et al. Usage, status, problems, trends and suggestions of 3D geological modeling[J]. Geology and Exploration, 2016, 52(4): 759-767.
[5] 吴胜和. 储层表征与建模[M]. 北京: 石油工业出版社, 2010.
  WU Shenghe. Reservoir characterization & modeling[M]. Beijing: Petroleum Industry Press, 2010.
[6] 于金彪. 油藏地质建模技巧及质量控制方法[J]. 新疆石油地质, 2017, 38(2): 188-192.
  YU Jinbiao. Reservoir geological modeling technique and quality control method[J]. Xinjiang Petroleum Geology, 2017, 38(2): 188-192.
[7] 姚光庆, 马正, 赵彦超, 等. 储层描述尺度与储层地质模型分级[J]. 石油实验地质, 1994, 16(4): 403-408.
  YAO Guangqing, MA Zheng, ZHAO Yanchao, et al. Measures on reservoir description corresponding with the graduation of geological reservoir models[J]. Petroleum Geology & Experiment, 1994, 16(4): 403-408.
[8] 胜利油田石油地质志编写组. 中国石油地质志(卷六): 胜利油田[M]. 北京: 石油工业出版社, 1993.
  The Oil Geology of Editorial Committee of Shengli Oilfield. Petroleum geology of China:Vol.6[M]. Beijing: Petroleum Industry Press, 1993.
[9] 刘彦娜. 精细化油藏管理, 改善孤岛油田中一区馆3-6单元后续水驱开发效果[J]. 经济管理(全文版), 2016, 10(3): 285-285.
  LIU Yanna. Refined reservoir management to improve the follow-up water drive development effect of Guan3-6 unit, Zhong1 District, Gudao Oilfield[J]. Economic Management(Full Text Edition), 2016, 10(3): 285-285.
[10] 张昌民, 张尚锋, 李少华, 等. 中国河流沉积学研究20年[J]. 沉积学报, 2004, 22(2): 183-192.
  ZHANG Changmin, ZHANG Shangfeng, LI Shaohua, et al. Advances in Chinese fluvial sedimentology from1983 to 2003[J]. Acta Sedimentologica Sinica, 2004, 22(2): 183-192.
[11] 徐东齐, 孙致学, 任宇飞, 等. 基于地质知识库的辫状河致密储层地质建模[J]. 断块油气田, 2018, 25(1): 57-61.
  XU Dongqi, SUN Zhixue, REN Yufei, et al. Geological modeling of braided river tight reservoir based on geological knowledge database[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 57-61.
[12] 王立德, 王小卫, 周辉, 等. 一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法[J]. 岩性油气藏, 2023, 35(4): 61-69.
  WANG Lide, WANG Xiaowei, ZHOU Hui, et al. A layered velocity modeling method for elastic wave full waveform inversion based on improved conjugate gradient method[J]. Lithologic Reservoirs, 2023, 35(4): 61-69.
[13] 冉祥金. 区域三维地质建模方法与建模系统研究[D]. 长春: 吉林大学, 2020.
  RAN Xiangjin. The research of method and system of regional three-dimensional geological modeling[D]. Changchun: Jilin University, 2020.
[14] MIALL A D. Architectural-element analysis a new method of facies analysis applied to fluvial deposits[J]. Earth Science Review, 1985, 22(4): 261-308.
[15] 尹艳树, 丁文刚, 安小平, 等. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
  YIN Yanshu, DING Wengang, AN Xiaoping, et al. Configuration characterization of Triassic Chang 611 reservoir in Sai 160 well area of Ansai oilfield, Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(4): 37-49.
[16] 何文祥, 吴胜和, 唐义疆, 等. 地下点坝砂体内部构型分析: 以孤岛油田为例[J]. 矿物岩石, 2005, 25(2): 81-86.
  HE Wenxiang, WU Shenghe, TANG Yijiang, et al. The architecture analysis of the underground point bar: Taking Gudao Oilfield as an example[J]. Journal of Mineralogy and Petrology, 2005, 25(2): 81-86.
[17] 徐振永, 吴胜和, 杨渔, 等. 地下曲流河沉积点坝内部储层构型研究: 以大港油田一区一断块Dj5井区为例[J]. 石油地球物理勘探, 2007, 42(增刊1): 86-89.
  XU Zhenyong, WU Shenghe, YANG Yu, et al. Study on reservoir's structural model inside sedimentary point bar of underground meandering river: Taking well Dj-5 in block-1 of zone-1 in Dagang Oilfield as a case[J]. Oil Geophysical Prospecting, 2007, 42(Suppl. 1): 86-89.
[18] 曾旭, 卞从胜, 沈瑞, 等. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
  ZENG Xu, BIAN Congsheng, SHEN Rui, et al. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag, Bohai Bay Basin[J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
[19] 徐中波, 汪利兵, 申春生, 等. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107.
  XU Zhongbo, WANG Libing, SHEN Chunsheng, et al. Architecture characterization of meandering river reservoirs of lower Minghuazhen Formation of Neogene in Penglai 19-3 oilfield, Bohai Sea[J]. Lithologic Reservoirs, 2023, 35(5): 100-107.
[20] 岳大力, 吴胜和, 刘建民. 曲流河点坝地下储层构型精细解剖方法[J]. 石油学报, 2007, 28(4): 99-103.
  YUE Dali, WU Shenghe, LIU Jianmin. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river[J]. Acta Petrolei Sinica, 2007, 28(4): 99-103.
[21] 陈仕臻, 林承焰, 任丽华. 构型模式控制下的曲流河多尺度地质建模研究: 以胜利油田史南区块为例[J]. 中国矿业大学学报, 2020, 49(3): 552-562.
  CHEN Shizhen, LIN Chengyan, REN Lihua. Multi-scale geological modeling of meandering river under the control of architectural pattern: Taking Shinan block of Shengli Oilfield as an example[J]. Journal of China University of Mining & Technology, 2020, 49(3): 552-562.
[22] 王珏, 高兴军, 周新茂. 曲流河点坝储层构型表征与剩余油分布模式[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 13-24.
  WANG Jue, GAO Xingjun, ZHOU Xinmao. Reservoir achitecture characterization and remaining oil distribution of meandering river[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(3): 13-24.
[23] 于欢. 辫状河储层内部构型精细描述及剩余油分布[J]. 大庆石油地质与开发, 2015, 34(4): 73-77.
  YU Huan. Fine characterization of the internal configuration for the braided river reservoirs and remained oil[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(4): 73-77.
[24] 范峥, 吴胜和, 岳大力, 等. 曲流河点坝内部构型的嵌入式建模方法研究[J]. 中国石油大学学报(自然科学版), 2012, 36(3): 1-6.
  FAN Zheng, WU Shenghe, YUE Dali, et al. Embedding modeling method for internal architecture of point bar sand body in meandering river reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(3): 1-6.
[25] 程武洲. 三维多点地质建模方法改进及应用[D]. 荆州: 长江大学, 2021.
  CHEN Wuzhou. Improvement and application of 3D multi-point geological modeling method[D]. Jingzhou: Yangtze University, 2021.
Outlines

/