Comprehensive Research

A new method for multi-factor capacity review of underground gas storage under complex geological conditions

  • HU Jun ,
  • YANG Jiakun ,
  • XU Hongcheng ,
  • ZHOU Dongliang ,
  • XU Feng ,
  • SHI Yuxia ,
  • ZHANG Siyuan ,
  • SONG Lina ,
  • PEI Gen ,
  • FAN Jiayi
Expand
  • 1. PipeChina Zhongyuan Gas Storage Co., Ltd., Puyang, Henan 457000, China
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Received date: 2023-09-14

  Online published: 2024-10-11

Abstract

The review of underground gas storage(UGS) capacity is influenced by multiple factors. Optimizing this capacity is crucial for achieving global optimization of UGS design parameters. The W23 UGS in Dongpu sag serves as a case study to explore the effects of formation water intrusion, salt deposition, stress sensitivity, and produced liquid on storage capacity utilization. A new model for reviewing the storage capacity, tailored to the specific conditions of W23 UGS, was developed and its feasibility was assessed. The results indicate that the W23 UGS exhibits low porosity and permeability, strong vertical heterogeneity, but weak lateral heterogeneity, characteristic of a weak edge water-driven gas reservoir. Factors such as the original gas storage volume, salt deposition, stress sensitivity, vertical production degree, formation water invasion, and produced liquid significantly impact the storage capacity of W23 UGS. The final check of the effective gas storage volume was calculated to be 3 679.51×104 m³, which is 3.9% lower than the originally estimated volume. Regionally, the effective volume after the first-stage review was 3 013.47×104 m³, representing 97.3% of the original storage volume. Meanwhile, an additional effective volume of 666.04×104 m³, accounting for 91.1% of the original volume, was identified. The main reasons for the reduced review results include the impacts of stress sensitivity, formation water intrusion, and vertical utilization, which collectively led to a decrease in the effective gas storage volume.

Cite this article

HU Jun , YANG Jiakun , XU Hongcheng , ZHOU Dongliang , XU Feng , SHI Yuxia , ZHANG Siyuan , SONG Lina , PEI Gen , FAN Jiayi . A new method for multi-factor capacity review of underground gas storage under complex geological conditions[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(5) : 795 -804 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.016

References

[1] 王海燕. 考虑多因素影响的储气库气井注采能力优化[J]. 大庆石油地质与开发, 2019, 38(3): 54-58.
  WANG Haiyan. Optimization of the injection-production capacity of the gas storage well considering the influences of the multiple factors[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(3): 54-58.
[2] 刘恒阳. “双碳”背景下天然气地下储气库机遇与挑战[J]. 石油与天然气化工, 2022, 51(6): 70-76.
  LIU Hengyang. Opportunities and challenges of underground natural gas storage based on carbon peak and carbon neutrality goals[J]. Chemical Engineering of Oil & Gas, 2022, 51(6): 70-76.
[3] 周军, 肖瑶, 孙建华, 等. 储气库地面工艺系统能效评价方法研究[J]. 石油与天然气化工, 2022, 51(2): 110-115.
  ZHOU Jun, XIAO Yao, SUN Jianhua, et al. Energy efficiency evaluation of underground gas storage ground process system[J]. Chemical Engineering of Oil & Gas, 2022, 51(2): 110-115.
[4] LEE Y, SEO D, LEE S, et al. Unlocking enhanced gas storage capacity in tuned methane hydrates: Exploring eutectic compositions and water-to-hydrate conversion[J]. Chemical Engineering Journal, 2023, 475, 129657.
[5] YANG S Y, HU S L, QI Z L, et al. Stability evaluation of fault in hydrocarbon reservoir-based underground gas storage: A case study of W gas storage[J]. Fuel, 2023, 129657.
[6] 丁国生, 王皆明. 枯竭气藏改建储气库需要关注的几个关键问题[J]. 天然气工业, 2011, 31(5): 87-89.
  DING Guosheng, WANG Jieming. Key points in the reconstruction of an underground gas storage based on a depleted gas reservoir[J]. Natural Gas Industry, 2011, 31(5): 87-89.
[7] 尤启东, 王智林, 奥立德, 等. 枯竭层状砂岩气藏改建储气库注采能力评价: 以Z气藏为例[J]. 复杂油气藏, 2022, 15(4): 76-80.
  YOU Qidong, WANG Zhilin, AO Lide, et al. Evaluation of the injection-production capacity of reconstructed gas storage in depleted stratified sandstone gas reservoirs:A case study of Z gas reservoir[J]. Complex Hydrocarbon Reservoirs, 2022, 15(4): 76-80.
[8] 高发连, 舒霞. 储气库库容的估算方法[J]. 油气储运, 2005, 24(12): 22-24.
  GAO Falian, SHU Xia. Calculation method on the inventory of underground gas storage[J]. Oil & Gas Storage and Transportation, 2005, 24(12): 22-24.
[9] 张士杰, 廖伟, 刘国良, 等. 气藏型地下储气库动态分析技术规范研究[J]. 天然气工业, 2022, 42(增刊1): 82-85.
  ZHANG Shijie, LIAO Wei, LIU Guoliang, et al. Study on the technical specification for the dynamic analysis of gas reservoir underground gas storage[J]. Natural Gas Industry, 2022, 42(Suppl. 1): 82-85.
[10] 范家伟, 伍藏原, 余松, 等. 异常高压含水凝析气藏有效库容影响因素[J]. 新疆石油地质, 2022, 43(4): 463-467.
  FAN Jiawei, WU Zangyuan, YU Song, et al. Factors influencing effective storage capacity of abnormally high pressure water containing condensate gas reservoirs[J]. Xinjiang Petroleum Geology, 2022, 43(4): 463-467.
[11] 高涛. 底水火山岩储气库库容和工作气量主控影响因素定量评价[J]. 特种油气藏, 2021, 28(3): 87-93.
  GAO Tao. Quantitative evaluation of main controlling factors of capacity and working gas volume Pf volcanic gas storage with bottom water[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 87-93.
[12] 李猛, 郑得文, 邱小松, 等. 储气库不同类型砂岩储层压敏特征及其影响因素[J]. 石油实验地质, 2023, 45(2): 385-392.
  LI Meng, ZHENG Dewen, QIU Xiaosong, et al. Stress sensitivity characteristics and influencing factors of different types of sandstone reservoirs in gas storage[J]. Petroleum Geology & Experiment, 2023, 45(2): 385-392.
[13] 张玥, 贾善坡, 温曹轩, 等. 气藏型储气库圈闭应力场扰动规律及影响因素分析[J]. 东北石油大学学报, 2022, 46(5): 115-128.
  ZHANG Yue, JIA Shanpo, WEN Caoxuan, et al. Analysis on disturbance law and influencing factors of stress field in gas storage traps[J]. Journal of Northeast Petroleum Geology University, 2022, 46(5): 115-128.
[14] 张强. 文23储气库储层段钻井液及储层保护技术[J]. 断块油气田, 2023, 30(3): 517-522.
  ZHANG Qiang. Drilling fluid and reservoir protection technology of reservoir sections in Wen 23 gas storage[J]. Fault-Block Oil and Gas Field, 2023, 30(3): 517-522.
[15] 宣涛, 朱建英, 苏展, 等. 多因素影响下地下储气库工作气量优化方法[J]. 录井工程, 2021, 32(4): 133-137.
  XUAN Tao, ZHU Jianying, SU Zhan, et al. Optimization method of working gas volume under the influence of multiple factors in underground gas storage[J]. Mud Logging Engineering, 2021, 32(4): 133-137.
[16] 何金蓬, 彭利果, 张明鑫, 等. 储气库井口天然气计量影响特性研究[J]. 石油与天然气化工, 2022, 51(3): 117-124.
  HE Jinpeng, PENG Liguo, ZHANG Mingxin, et al. Study on influence of natural gas metering at wellhead of gas storage[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 117-124.
[17] 张俊法, 曾大乾, 张广权, 等. 超高压气藏改建储气库注采能力及库容评价: 以川东北清溪储气库为例[J]. 断块油气田, 2021, 28(6): 775-780.
  ZHANG Junfa, ZENG Daqian, ZHANG Guangquan, et al. Injection-productivity and storage capacity evaluation for rebuilding gas storage based on ultra-high pressure gas reservoir:A case study of Qingxi gas storage in Northeast Sichuan[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 775-780.
[18] 廖伟, 罗双涵, 胡书勇, 等. 气藏型储气库出砂规律研究的新方法[J]. 西南石油大学学报(自然科学版), 2023, 45(3): 119-130.
  LIAO Wei, LUO Shuanghan, HU Shuyong, et al. A new method for the study of sand production in gas reservoir storage[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(3): 119-130.
[19] 唐康, 廖新维, 闵忠顺, 等. 复杂类型储气库多周期注采相渗变化规律[J]. 西安石油大学学报(自然科学版), 2023, 38(3): 81-87.
  TANG Kang, LIAO Xinwei, MIN Zhongshun, et al. Variation of relative permeability during multi-cycle injection-production of complex reservoir gas storage[J]. Journal of Xi'an Shiyou University(Natural Science), 2023, 38(3): 81-87.
[20] 李进步, 夏勇, 王德龙, 等. 鄂尔多斯盆地低渗岩性气藏型储气库建库设计与运行优化关键技术[J]. 天然气地球科学, 2023, 34(8): 1442-1451.
  LI Jinbu, XIA Yong, WANG Delong, et al. Key technologies of construction design and operation optimization for underground gas storage of low permeability lithologic gas reservoirs in Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(8): 1442-1451.
[21] 夏勇, 张建国, 何依林, 等. 低渗岩性气藏改建储气库的地质可行性与运行指标设计: 以鄂尔多斯盆地S区块为例[J]. 天然气地球科学, 2023, 34(8): 1452-1459.
  XIA Yong, ZHANG Jianguo, HE Yilin, et al. Feasibility and operating index design of low permeability lithological reservoir into underground gas storage:case study of S area in Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(8): 1452-1459.
[22] 刘伟, 王群一, 孙彦春, 等. 基于多轮次注采渗流实验分析的挥发性油藏储气库建库可行性评价[J]. 天然气工业, 2022, 42(12): 65-71.
  LIU Wei, WANG Qunyi, SUN Yanchun, et al. Feasibility evaluation of underground gas storage construction from volatile oil reservoirs based on experimental analysis of flow in multicycle gas injection-production[J]. Natural Gas Industry, 2022, 42(12): 65-71.
[23] 王皆明, 李春, 孙军昌, 等. 气藏型储气库井注采动态不稳定流分析方法[J]. 石油勘探与开发, 2022, 49(1): 156-165.
  WANG Jieming, LI Chun, SUN Junchang, et al. An analysis method of injection and production dynamic transient flow in a gas field storage facility[J]. Petroleum Exploration and Development, 2022, 49(1): 156-165.
[24] 邱小松, 郑雅丽, 叶颖, 等. 含水层储气库库址筛选及关键指标评价方法: 以苏北盆地白驹含水层为例[J]. 中国石油勘探, 2021, 26(5): 140-148.
  QIU Xiaosong, ZHENG Yali, YE Ying, et al. Aquifer site selection for natural gas storage and key indices evaluation method:a case study of Baiju aquifer in Subei Basin[J]. China Petroleum Exploration, 2021, 26(5): 140-148.
Outlines

/