Geothermal Energy Development and Utilization

Key technologies for exploitation and utilization of geothermal fields in fluvial sandstone thermal reservoirs: A case study of Gaoshangpu-Liuzan geothermal field in Nanpu Sag, Bohai Bay Basin

  • ZHAO Zhongxin ,
  • LI Hongda ,
  • YAN Yican ,
  • REN Lu
Expand
  • PetroChina Jidong Oilfield Company, Tangshan, Hebei 063004, China

Received date: 2024-02-10

  Online published: 2024-12-10

Abstract

The Nanpu Sag in the Huanghua Depression of the Bohai Bay Basin is rich in geothermal resources, with multiple geothermal fields identified, including Gaoshangpu-Liuzan, Nanpu, and Matouying. The thermal reservoirs, primarily composed of fluvial sandstone from the Guantao Formation, exhibit advantages such as high temperatures(70-90 ℃), significant water amounts (100 m3/h), large-scale reservoirs, and thick caprocks. However, their development faces several challenges, including optimal target area selection, sustainability evaluation, efficient drilling and production processes, reinjection into sandstone reservoirs, long-distance centralized thermal water transportation, and intelligent monitoring. To address these challenges, practical exploration in the Gaoshangpu-Liuzan geothermal field has led to the development of five core technologies: 1) optimization and detailed resource evaluation technology for exploration areas; 2) well placement and thermal field simulation technology; 3) geothermal well drilling, completion, and pressure-free reinjection for sandstone thermal reservoirs; 4) multi-well collection and long-distance thermal water transportation technology; 5) intelligent management and control technology for geothermal development. These advancements provide technical support for geothermal heating projects in the Gaoshangpu-Liuzan geothermal field and the geothermal development efforts of Jidong Oilfield.

Cite this article

ZHAO Zhongxin , LI Hongda , YAN Yican , REN Lu . Key technologies for exploitation and utilization of geothermal fields in fluvial sandstone thermal reservoirs: A case study of Gaoshangpu-Liuzan geothermal field in Nanpu Sag, Bohai Bay Basin[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(6) : 857 -863 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.005

References

[1] 刘欢. 鲁北平原孔隙热储地热资源开发利用模式研究[D]. 青岛: 山东科技大学, 2014.
  LIU Huan. Study on the exploitation and utilization model of geothermal resources in the pore thermal reservoir of Lubei Plain[D]. Qingdao: Shandong University of Science and Technology, 2014.
[2] 李锋, 黄文博, 胡灯明, 等. 油区地热能综合利用方案分析:以福山油田为例[J]. 新能源进展, 2022, 10(2): 126-136.
  LI Feng, HUANG Wenbo, HU Dengming, et al. Analysis on comprehensive utilization scheme of geothermal energy in oil area: Taking Fushan Oilfield as an example[J]. Advances in New and Renewable Energy, 2022, 10(2): 126-136.
[3] XIE T, WANG Q, ZHANG G, et al. Low-carbon economic dispatch of virtual power plant considering hydrogen energy storage and tiered carbon trading in multiple scenarios[J]. Processes, 2023, 12(1): 90.
[4] 宋超凡, 赵军, 尹洪梅, 等. 碳中和背景下油田区地热资源的低成本可持续利用[J]. 华电技术, 2021, 43(11): 66-73.
  SONG Chaofan, ZHAO Jun, YIN Hongmei, et al. Low-cost and sustainable utilization of geothermal resources in oilfields to achieve carbon neutrality[J]. Huadian Technology, 2021, 43(11): 66-73.
[5] 曹锐, 多吉, 李玉彬, 等. 我国中深层地热资源赋存特征、发展现状及展望[J]. 工程科学学报, 2022, 44(10): 1623-1631.
  CAO Rui, DUO Ji, LI Yubin, et al. Occurrence characteristics, development status, and prospect of deep high-temperature geothermal resources in China[J]. Chinese Journal of Engineering, 2022, 44(10): 1623-1631.
[6] 史帅航, 过瑞, 陈迪, 等. 双碳目标下地热资源开发利用的创新思路探析[J]. 化工矿产地质, 2022, 44(2): 159-163.
  SHI Shuaihang, GUO Rui, CHEN Di, et al. Innovative ideas for development and utilization of geothermal resources under “Double Carbon” goal[J]. Geology of Chemical Minerals, 2022, 44(2): 159-163.
[7] 汪集暘, 邱楠生, 胡圣标, 等. 中国油田地热研究的进展和发展趋势[J]. 地学前缘, 2017, 24(3): 1-12.
  WANG Jiyang, QIU Nansheng, HU Shengbiao, et al. Advancement and developmental trend in the geothermics of oil fields in China[J]. Earth Science Frontiers, 2017, 24(3): 1-12.
[8] 赵玥. 新能源需新突破[J]. 中国石油石化, 2023, 25(8): 26-29.
  ZHAO Yue. New energy requires new breakthroughs[J]. China Petrochem, 2023, 25(8): 26-29.
[9] 张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268.
  ZHANG Wei, WANG Guiling, LIU Feng, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 2019, 46(2): 255-268.
[10] 王钧, 黄尚瑶, 黄歌山, 等. 中国地温分布的基本特征[M]. 北京: 地震出版社, 1990.
  WANG Jun, HUANG Shangyao, HUANG Geshan, et al. Basic characteristics of ground temperature distribution in China[M]. Beijing: Seismological Press, 1990.
[11] 龚育龄. 中国东部渤海湾盆地热结构和热演化[M]. 北京: 原子能出版社, 2011.
  GONG Yuling. Thermal structure and evolution of Bohai Bay Basin, eastern China[M]. Beijing: Atomic energy Press, 2011.
[12] 饶松, 肖红平, 王朱亭, 等. 渤海湾盆地馆陶组热储特征与地热资源评价[J]. 天然气工业, 2023, 43(5): 141-152.
  RAO Song, XIAO Hongping, WANG Zhuting, et al. Geothermal reservoir characteristics and geothermal resource evaluation of Guantao Formation in Bohai Bay Basin[J]. Natural Gas Industry, 2023, 43(5): 141-152.
[13] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937
  WANG Guiling, LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923-1937.
[14] 董月霞, 周海民, 夏文臣. 南堡凹陷火山活动与裂陷旋回[J]. 石油与天然气地质, 2000, 21(4): 304-307.
  DONG Yuexia, ZHOU Haimin, XIA Wenchen. Volcanic activities and rift subsidence cycles in Nanpu Sag[J]. Oil & Gas Geology, 2000, 21(4): 304-307.
[15] 董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践: 以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3): 666-676.
  DONG Yuexia, HUANG Hongxiang, REN Lu, et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin: A case of the Caofeidian geothermal heating project in Tangshan, China[J]. Petroleum Exploration and Development, 2021, 48(3): 666-676.
[16] 赵忠新, 李洪达, 颜艺灿, 等. 中国东部断陷地热与油气成藏条件对比分析: 以冀东油田南堡凹陷为例[J]. 油气与新能源, 2023, 35(2): 68-72.
  ZHAO Zhongxin, LI Hongda, YAN Yican, et al. Comparative analysis on geothermal and oil and gas accumulation conditions in faults basins in eastern China: Taking Nanpu Sag of Jidong Oilfield as an example[J]. Petroleum and New Energy, 2023, 35(2): 68-72.
[17] 张育平, 杨潇, 刘俊, 等. 地源热泵系统能效提升途径[J]. 油气藏评价与开发, 2023, 13(6): 726-740.
  ZHANG Yuping, YANG Xiao, LIU Jun, et al. Overview of solutions to improve efficiency of ground source heat pump system[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 726-740.
[18] 何东博, 任路, 郝杰, 等. 基于层次分析法的地热资源评价体系研究: 以河北省曹妃甸地区中深层水热型砂岩储层为例[J]. 油气藏评价与开发, 2023, 13(6): 713-725.
  HE Dongbo, REN Lu, HAO Jie, et al. Quantitative evaluation system of geothermal resources based on analytic hierarchy process: A case study of middle-deep hydrothermal sandstone reservoir in Caofeidian of Hebei Province[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 713-725.
[19] 国家能源局.地热资源储量分级评价方法: NB∕T 10700—2021[S]. 北京: 中国石化出版社, 2021: 1.
  National Energy Administration.Classification and assessment methods for geothermal resources/reserves: NB∕T 10700—2021[S]. Beijing: China Petrochemical Press, 2021: 1.
[20] 国家能源局.地热储层评价方法: NB∕T 10263—2019[S]. 北京: 中国石化出版社, 2019: 1.
  National Energy Administration.Evaluating methods of geothermal reservoirs: NB∕T 10263—2019[S]. Beijing: China Petrochemical Press, 2019: 1.
Outlines

/