Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 6: 918 - 924
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.06.013
Technical practice of enhanced oil recovery in medium and high permeability fault block reservoirs: A case study of Chun-47 block in Dongying Sag of Jiyang Depression
Received date: 2023-08-16
Online published: 2024-12-10
Most mature oilfields in eastern China, particularly medium and high permeability fault block reservoirs, have entered the high water-cut development stage. Enhancing oil recovery(EOR) in such reservoirs is crucial for stabilizing production and extending the economic development period of aging fields. The Chun-47 Block in the Dongying Sag of the Jiyang Depression is a medium and high permeability fault block reservoir. Adaptive well pattern design and differential adjustment strategies tailored to the reservoir characteristics during various development stages have enabled efficient exploitation, with a current recovery factor of 78.5% and an ultimate recovery factor of 84%. Analyzing the mechanisms underlying efficient development and identifying the field’s development patterns have academic and practical significance. This study examines the geological characteristics, reservoir macroscopic and microscopic features, fluid properties, and development strategies. Results highlight that favorable reservoir properties form the foundation for high recovery rates, while high waterflood displacement efficiency and comprehensive stage-specific development strategies serve as the key technical aids. The practical experience, strategies, and methods adopted for the efficient development of this block provide valuable insights for similar oilfields.
MAO Zhenqiang . Technical practice of enhanced oil recovery in medium and high permeability fault block reservoirs: A case study of Chun-47 block in Dongying Sag of Jiyang Depression[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(6) : 918 -924 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.013
[1] | 韩大匡. 深度开发高含水油田提高采收率问题的探讨[J]. 石油勘探与开发, 1995, 22(5): 47-55. |
HAN Dakuang. An approach to deep development of high water-cut oil field to improve oil recovery[J]. Petroleum Exploration and Development, 1995, 22(5): 47-55. | |
[2] | 邓猛, 邵英博, 赵军寿, 等. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏, 2020, 32(6): 154-163. |
DENG Meng, SHAO Yingbo, ZHAO Junshou, et al. Reservoir architecture and remaining oil distribution of channel-bar:a case from lower Minghuazhen formation in Bohai A Oilfield[J]. Lithologic Reservoirs, 2020, 32(6): 154-163. | |
[3] | 曲世元, 姜汉桥. 复杂小断块油藏水驱辅助注气吞吐提高采收率研究[J]. 特种油气藏, 2021, 28(4): 116-121. |
QU Shiyuan, JIANG Hanqiao. Study on oil recovery enhancement by gas-injection stimulation assisted by water flooding in complex reservoir with small fault block[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 116-121. | |
[4] | 陈科, 何伟. 渤海某区域边底水油藏高倍水驱机理及应用[J]. 石油化工应用, 2021, 40(2): 25-28. |
CHEN Ke, HE Wei. Mechanism and application of high-power waterflooding in a sandstone reservoir with side-bottom water in a certain area of the Bohai Sea[J]. Petrochemical Industry Application, 2021, 40(2): 25-28. | |
[5] | 邴绍献. 基于特高含水期油水两相渗流的水驱开发特征研究[D]. 成都: 西南石油大学, 2013. |
BING Shaoxian. Study on water drive development characteristics based on the oil-water two phase flow of Ultra-high water cut stage[D]. Chengdu: Southwest Petroleum University, 2013. | |
[6] | 张戈. 复杂断块油藏人工边水驱提高采收率机理分析[J]. 断块油气田, 2014, 21(4): 476-479. |
ZHANG Ge. Analysis on IOR mechanism of artificial edge water flooding in complex fault-block reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(4): 476-479. | |
[7] | 黄玲玲. 新沟嘴组油藏提高采收率技术对策研究[J]. 江汉石油职工大学学报, 2021, 34(3): 28-30. |
HUANG Lingling. Study on strategy for enhancing oil recovery in xingongzui formation[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2021, 34(3): 28-30. | |
[8] | 吕晓光, 李伟. 水驱油藏特高含水阶段提高采收率可行性研究及技术对策[J]. 油气地质与采收率, 2022, 29(6): 130-135. |
LYU Xiaoguang, LI Wei. Feasibility and technologies for improving recovery at extra-high water cut development stage in waterflooding reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 130-135. | |
[9] | 李爱芬, 张志英, 崔传智, 等. 油层物理学[M]. 东营: 石油大学出版社, 2011. |
LI Aifen, ZHANG Zhiying, CUI Chuanzhi, et al. Reservoir Physics[M]. Dongying: China University of Petroleum Press, 2011. | |
[10] | 王攀荣. 裂缝性复杂介质油藏油水混合流动特征实验研究[D]. 成都: 西南石油大学, 2014. |
WANG Panrong. Experimental study on oil-water mixed flow characteristics in fractured complex medium reservoirs[D]. Chengdu: Southwest Petroleum University, 2014. | |
[11] | 杨艳芳, 罗静兰, 杨金龙, 等. 姬塬地区长8砂岩储层渗流曲线特征及其影响因素分析[J]. 高校地质学报, 2011, 17(2): 231-239. |
YANG Yanfang, LUO Jinglan, YANG Jinlong, et al. Analysis of the percolation characteristics and their influence factors on the Chang-8 sandstone reservoir in Jiyuan Area[J]. Geological Journal of China Universities, 2011, 17(2): 231-239. | |
[12] | 王瑞. 动态注采耦合开发特征与适用性及技术政策界限[J]. 油气地质与采收率, 2022, 29(2): 100-108. |
WANG Rui. Study on both characteristics and applicabilities of dynamic injection-production coupling development and technical policy boundaries[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 100-108. | |
[13] | 李斌会, 余昭艳, 李宜强, 等. 聚合物驱相对渗透率曲线测定方法研究进展[J]. 大庆石油地质与开发, 2017, 36(4): 79-86. |
LI Binhui, YU Zhaoyan, LI Yiqiang, et al. Research progress on the testing method of the relative permeability curvees for the polymer flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(4): 79-86. | |
[14] | 阳晓燕, 黄凯, 马超, 等. 不同油藏条件下相渗曲线分析[J]. 科学技术与工程, 2012, 12(14): 3340-3343. |
YANG Xiaoyan, HUANG Kai, MA Chao, et al. The variation of relative permeability curves in the different reservoir[J]. Science Technology and Engineering, 2012, 12(14): 3340-3343. | |
[15] | 谷建伟, 隋顾磊, 李志涛, 等. 基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测[J]. 深圳大学学报(理工版), 2018, 35(6): 575-581. |
GU Jianwei, SUI Gulei, LI Zhitao, et al. Oil well production forecasting method based on ARIMA-Kalman filter data mining model[J]. Journal of Shenzhen University(Science and Engineering), 2018, 35(6): 575-581. | |
[16] | MA H W, ZHANG Z T. Grey prediction with Markov-Chain for crude oil production and consumption in China[C]// The Sixth International Symposium on Neural Networks, Wuhan, China, May 2009. |
[17] | 郑晓兰. 应用BP神经网络预测原油含水率的研究[D]. 大庆: 大庆石油学院, 2010. |
ZHENG Xiaolan. Research on prediction of water cut of crude oil based on BP neural network[D]. Daqing: Daqing Petroleum Institute, 2010. | |
[18] | 马林茂, 李德富, 郭海湘, 等. 基于遗传算法优化BP神经网络在原油产量预测中的应用: 以大庆油田BED试验区为例[J]. 数学的实践与认识, 2015, 45(24): 117-128. |
MA Linmao, LI Defu, KUO Haixiang, et al. BP nerual network based on genetic algorithm applied in crude oil production forecast: taking the BED test area of the Daqing oilfield as an example[J]. Mathematics in Practice and Theory, 2015, 45(24): 117-128. | |
[19] | 崔传智, 尹帆, 李立峰, 等. 水驱油藏产量递减评价方法[J]. 断块油气田, 2019, 26(5): 605-608. |
CUI Chuanzhi, YIN Fan, LI Lifeng, et al. Evaluation method of production decline for water drive reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 605-608. | |
[20] | 张方舟, 严胡勇, 杨立全, 等. 改进型灰色神经网络模型在油田产量中的应用[J]. 计算机技术与发展, 2013, 23(6): 241-248. |
ZHANG Fangzhou, YAN Huyong, YANG Liquan, et al. Application of improved grey neural network model to oil yields[J]. Computer Technology and Development, 2013, 23(6): 241-248. |
/
〈 | 〉 |