Petroleum Reservoir Evaluation and Development >
2024 , Vol. 14 >Issue 6: 942 - 951
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.06.016
Characterization of mesoscopic damage evolution in complex calcite vein-filled coal rocks
Received date: 2023-08-22
Online published: 2024-12-10
To investigate the failure characteristics of calcite veins with complex morphologies in coal rock under uniaxial compression, thin-section observation was used to examine the calcite vein filling within coal rock. Fractal dimension analysis was applied to quantify the complexity of calcite morphology. Numerical simulations of uniaxial compression tests on coal rock containing calcite veins of varying morphologies were conducted using a two-dimensional real failure process mesoscopic analysis software. The results revealed that the complexity of calcite morphology significantly affected the mesoscopic damage evolution characteristics of coal rock. The peak strength generally increased with the fractal dimension of the calcite veins. A positive correlation between crack rate and peak stress was observed, indicating that higher peak strengths corresponded to higher crack rates at final failure. During uniaxial compression, multiple microcracks initially appeared around the calcite vein particles, with fracture propagation directions closely aligned with the vein orientation, influencing the crack propagation direction in the coal rock. Additionally, coal rock with larger fractal dimensions exhibited more acoustic emission events, signifying more complex failure patterns. These findings contribute to a deeper understanding of how calcite vein distribution affects the mechanical properties of coal rock and provide a novel approach to studying the mesoscopic damage evolution in coal rock containing calcite veins.
Key words: coal rock; mesoscopic; calcite vein; fractal dimension; failure
WU Zhonghu , XIA Xi , WANG Wentao , TANG Motian , LEI Wenli , MENG Xiangrui . Characterization of mesoscopic damage evolution in complex calcite vein-filled coal rocks[J]. Petroleum Reservoir Evaluation and Development, 2024 , 14(6) : 942 -951 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.016
[1] | 孙杰, 程爱国, 刘亢, 等. 中国煤炭与煤层气协同勘查开发现状与发展趋势[J]. 中国地质, 2023, 50(3): 730-742. |
SUN Jie, CHENG Aiguo, LIU Kang, et al. The current situation and development trend of coordinated exploration and development of coal and coalbed methane in China[J]. Geology in China, 2023, 50(3): 730-742. | |
[2] | 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917. |
LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917. | |
[3] | 徐凤银, 王勃, 赵欣, 等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3): 9-18. |
XU Fengyin, WANG Bo, ZHAO Xin, et al. Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of “double carbon”[J]. China Petroleum Exploration, 2021, 26(3): 9-18. | |
[4] | 李勇, 吴鹏, 高计县, 等. 煤成气多层系富集机制与全含气系统模式——以鄂尔多斯盆地东缘临兴区块为例[J]. 天然气工业, 2022, 42(6): 52-64. |
LI Yong, WU Peng, GAO Jixian, et al. Multilayer coal-derived gas enrichment mechanism and whole gas bearing system model: A case study on the Linxing Block along the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(6): 52-64. | |
[5] | 陈跃, 马东民, 方世跃, 等. 构造和水文地质条件耦合作用下煤层气富集高产模式[J]. 西安科技大学学报, 2019, 39(4): 644-655. |
CHEN Yue, MA Dongmin, FANG Shiyue, et al. Enrichment and high-yield models of coalbed methane influenced by geologic structures and hydrologic conditions[J]. Journal of Xi'an University of Science and Technology, 2019, 39(4): 644-655. | |
[6] | 李勇, 许卫凯, 高计县, 等. “源-储-输导系统”联控煤系气富集成藏机制——以鄂尔多斯盆地东缘为例[J]. 煤炭学报, 2021, 46(8): 2440-2453. |
LI Yong, XU Weikai, GAO Jixian, et al. Mechanism of coal measure gas accumulation under integrated control of “source reservoir-transport system”: A case study from east margin of Ordos Basin[J]. Journal of China Coal Society, 2021, 46(8): 2440-2453. | |
[7] | 赵少磊, 朱炎铭, 曹新款, 等. 地质构造对煤层气井产能的控制机理与规律[J]. 煤炭科学技术, 2012, 40(9):108-111. |
ZHAO Shaolei, ZHU Yanming, CAO Xinkuan, et al. Control mechanism and law of geological structure affected to production capacity of coal bed methane well[J]. Coal Science and Technology, 2012, 40(9): 108-111. | |
[8] | 施雷庭, 赵启明, 任镇宇, 等. 煤岩裂隙形态对渗流能力影响数值模拟研究[J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
SHI Leiting, ZHAO Qiming, REN Zhenyu, et al. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 424-432. | |
[9] | 胡千庭, 李晓旭, 陈强, 等. 酸性压裂液防治低渗煤层水锁损害实验研究[J]. 煤炭学报, 2022, 47(12): 4466-4481. |
HU Qianting, LI Xiaoxu, CHEN Qiang, et al. Mitigating water blockage in low-permeability coal seam by acid-based fracturing fluid[J]. Journal of China Coal Society, 2022, 47(12): 4466-4481. | |
[10] | 李腾飞, 孙增奎, 林国涛, 等. 含方解石脉石炭系灰岩单轴压缩的变形破裂特点[J]. 工程地质学报, 2023, 31(2): 351-357. |
LI Tengfei, SUN Zengkui, LIN Guotao, et al. Mechanical behavior of carboniferous limestone containing calcite veins under uniaxial compression conditions[J]. Journal of Engineering Geology, 2023, 31(2): 351-357. | |
[11] | LEE H P, OLSON J E, HOLDER J, et al. The interaction of propagating opening mode fractures with preexisting discontinuities in shale[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1): 169-181. |
[12] | LEE H P, OlSON J E, SCHULTZ R A. Interaction analysis of propagating opening mode fractures with veins using the Discrete Element Method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 275-288. |
[13] | HUANG D, YANG Y Y, SONG Y X, et al. Fracture behavior of shale containing two parallel veins under semi-circular bend test using a phase-field method[J]. Engineering Fracture Mechanics, 2022, 267: 108428. |
[14] | GAO F Q, KANG H P, WU Y Z. Experimental and numerical study on the effect of calcite on the mechanical behaviour of coal[J]. International Journal of Coal Geology, 2016, 158: 119-128. |
[15] | 王成旺, 徐凤银, 甄怀宾, 等. 鄂尔多斯盆地东缘本溪组8#煤层方解石脉体成因[J]. 特种油气藏, 2022, 29(4): 62-68. |
WANG Chengwang, XU Fengyin, ZHEN Huaibin, et al. Genesis of calcite veins in 8# coal bed of Benxi Formation on Eastern Margin of Ordos Basin[J]. Special Oil Gas Reservoirs, 2022, 29(4): 62-68. | |
[16] | LIU J J, SONG H J, DAI S F, et al. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input[J]. Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration, 2019, 115: 103190. |
[17] | 窦新钊, 姜波, 秦勇, 等. 黔西盘县地区煤层气成藏的构造控制[J]. 高校地质学报, 2012, 18(3): 447-452. |
DOU Xinzhao, JIANG Bo, QIN Yong, et al. Tectonic control of coalbed methane reservoirs in Panxian, Western Guizhou[J]. Geological Journal of China Universities. 2012, 18(3): 447-452. | |
[18] | 蔡佳丽. 黔西滇东地区不同煤变质作用对煤储层物性的控制[D]. 中国地质大学(北京), 2012. |
CAI Jiali. Control effect of different coal metamorphism on physical properties of coal reservoirs in Western Guizhou and Eastern Yunnan[D]. Beijing: China University of Geosciences(Beijing), 2012. | |
[19] | 曹代勇, 刘志飞, 王安民, 等. 构造物理化学条件对煤变质作用的控制[J]. 地学前缘, 2022, 29(1): 439-448. |
CAO Daiyong, LIU Zhifei, WANG Anmin, et al. Control of coal metamorphism by tectonic physicochemical conditions[J]. Earth Science Frontiers, 2022, 29(1): 439-448. | |
[20] | 文德修. 六盘水地区控煤构造样式与赋煤规律[J]. 西部探矿工程, 2013, 25(11): 147-149. |
WEN Dexiu. Coal-control tectonic pattern and coal-endowment law in Liupanshui area[J]. West-China Exploration Engineering, 2013, 25(11): 147-149. | |
[21] | 朱剑兵, 纪友亮, 李储华. 利用分形维数定量表征断裂发育程度[J]. 石油学报, 2005, 26(5): 53-56. |
ZHU Jianbing, JI Youliang, LI Chuhua. Quantitative characterization of development degree of fractures in fault system by fractal dimension[J]. Acta Petrolei Sinica, 2005, 26(5): 53-56. | |
[22] | LIU H, ZUO Y J, WU Z H, et al. Fractal analysis of mesoscale failure evolution and microstructure characterization for sandstone using DIP, SEM-EDS, and Micro-CT[J]. International Journal of Geomechanics, 2021, 21(9): 1-17. |
[23] | LIU H, WU Z H, ZUO Y J, et al. Fractal study on mesodamage evolution of three-dimensional irregular fissured sandstone[J]. International Journal of Geomechanics, 2023, 23(11): 1-15. |
[24] | 唐摩天, 邬忠虎, 王安礼, 等. 不同围压下页岩微观破裂过程与量化研究[J]. 地下空间与工程学报, 2022, 18(2): 438-445. |
TANG Motian, WU Zhonghu, WANG Anli, et al. Microscopic fracture process and quantitative study of shale under different confining pressures[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(2): 438-445. | |
[25] | WU Z H, LI L P, LOU Y L, et al. Energy evolution analysis of coal fracture damage process based on digital image processing[J]. Applied Sciences, 2023, 12: 3944. |
[26] | 侯连浪, 刘向君, 梁利喜, 等. 割理对煤岩加载过程能量演化特征影响数值模拟[J]. 煤炭学报, 2020, 45(3): 1061-1069. |
HOU Lianlang, LIU Xiangjun, LIANG Lixi, et al. Numerical simulation of effect of cleats on energy evolution of coal and rock in loading process[J]. Journal of China Coal Society, 2020, 45(3): 1061-1069. | |
[27] | 刘镐, 左宇军, 邬忠虎, 等. 基于数字图像处理的混凝土内蕴裂纹扩展变形规律及破裂过程研究[J]. 混凝土, 2020, 363(1): 32-37. |
LIU Hao, ZUO Yujun, WU Zhonghu, et al. Study of concrete internal crack growth deformation law and fracture process using digital images[J]. Concrete, 2020, 363(1): 32-37. | |
[28] | PALUSZNY A, TANG X H, NEJATI M, et al. A direct fragmentation method with Weibull function distribution of sizes based on finite- and discrete element simulations[J]. International Journal of Solids and Structures, 2016, 80: 38-51. |
[29] | PAN X H, LYU Q. A quantitative strain energy indicator for predicting the failure of laboratory-scale rock samples: Application to shale rock[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2689-2707. |
[30] | TODINOV M T. Is Weibull distribution the correct model for predicting probability of failure initiated by non-interacting flaws?[J]. International Journal of Solids & Structures, 2009, 46(3-4): 887-901. |
[31] | ZHOU X P. Analysis of the localization of deformation and the complete stress-strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading[J]. International Journal of Solids & Structures, 2004, 41(5-6): 1725-1738. |
[32] | LIU H, MUKHERJEE B, ZUO Y J, et al. Fractal dimension used as a proxy to understand the spatial distribution for Carlin-type gold deposits[J]. Ore Geology Reviews, 2023, 158: 105534. |
[33] | YU Q L, ZHU W C, TANG C A, et al. Impact of rock microstructures on failure processes: Numerical study based on DIP technique[J]. Geomechanics and engineering, 2014, 7(4): 375-401. |
[34] | LI G, TANG C A. A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 74: 133-150. |
/
〈 | 〉 |