Oil and Gas Development

Study on variation in decline rate with water cut using relative permeability curves

  • MA Peishen ,
  • SUN Yili ,
  • SHU Zheng ,
  • TAN Yeqiang ,
  • YU Qiang ,
  • ZHANG Wei ,
  • WU Changhu ,
  • QI Yong
Expand
  • 1. Research Institute of Exploration and Development, Sinopec Henan Oilfield Compary, Nanyang, Henan 474780, China
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    3. No.1 Oil Production Plant, Sinopec Henan Oilfield Compary, Nanyang, Henan 474780, China

Received date: 2024-04-11

  Online published: 2025-01-26

Abstract

To investigate the variation of production decline rate at different water cut stages during oilfield development, this study explored the relationship between decline rate, water cut rise rate, and water cut based on relative permeability curves. The relationship between decline rate and water cut under injection-production balance conditions was established, followed by computational analyses on a thick oil reservoir Z and a multi-layer oil reservoir S. The results showed that, under ideal injection-production balance conditions, the decline rate at a certain water cut stage was jointly influenced by liquid production rate and irreducible water saturation. The decline rate exhibited a parabolic trend with increasing water cut and was proportional to the liquid production rate. For a given reservoir under known conditions, the magnitude of the production decline rate was primarily determined by the liquid production rate and could be controlled by adjusting parameters such as well spacing density and the ratio of injection to production wells, which affected the liquid production rate. By establishing the relationship between decline rate and water cut, factors influencing production decline are clarified, providing a basis for strategies to mitigate production decline.

Cite this article

MA Peishen , SUN Yili , SHU Zheng , TAN Yeqiang , YU Qiang , ZHANG Wei , WU Changhu , QI Yong . Study on variation in decline rate with water cut using relative permeability curves[J]. Petroleum Reservoir Evaluation and Development, 2025 , 15(1) : 110 -115 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.01.014

References

[1] 王睿, 薛龙龙, 党东琪, 等. 产量递减方程通式的建立及应用[J]. 石油学报, 2023, 44(10): 1693-1705.
  WANG Rui, XUE Longlong, DANG Dongqi, et al. Establishment and application of general equation for production decline[J]. Acta Petrolei Sinica, 2023, 44(10): 1693-1705.
[2] 赵国忠, 李承龙, 何鑫, 等. 陆相砂岩油藏特高含水期开发指标变化规律[J]. 大庆石油地质与开发, 2023, 42(6): 50-58.
  ZHAO Guozhong, LI Chenglong, HE Xin, et al. Development indexes variation law of continental sandstone reservoirs in ultra-high water cut stage[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(6): 50-58.
[3] 王欣, 才博, 李帅, 等. 中国石油油气藏储层改造技术历程与展望[J]. 石油钻采工艺, 2023, 45(1): 67-75.
  WANG Xin, CAI Bo, LI Shuai, et al. Development process and prospect of CNPC's reservoir stimulation technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 67-75.
[4] 门海文, 张静, 魏海军, 等. 油气藏产量旋回泛函数学模型的建立及应用[J]. 新疆石油地质, 2023, 44(3): 365-374.
  MEN Haiwen, ZHANG Jing, WEI Haijun, et al. Establishment and application of functional mathematical model for production cycle of oil and gas reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(3): 365-374.
[5] 崔传智, 尹帆, 李立峰, 等. 水驱油藏产量递减评价方法[J]. 断块油气田, 2019, 26(5): 605-608.
  CUI Chuanzhi, YIN Fan, LI Lifeng, et al. Evaluation method of production decline for water drive reservoir[J]. Fault-Block Oil & Gas Field. 2019, 26(5): 605-608.
[6] 赵春明, 罗宪波, 别梦君. 水驱油田产量递减规律研究[J]. 重庆科技学院学报(自然科学版), 2017, 19(1): 35-38.
  ZHAO Chunming, LUO Xianbo, BIE Mengjun. Study on the regularity of production decline of water-drive oilfield[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2017, 19(1): 35-38.
[7] 毛光黔, 宋先知, 丁燕, 等. 基于梯度提升决策树算法的钻井工况识别方法[J]. 石油钻采工艺, 2023, 45(5): 532-539.
  MAO Guangqian, SONG Xianzhi, DING Yan, et al. Drilling condition identification method based on gradient boosting decision tree[J]. Oil Drilling & Production Technology, 2023, 45(5): 532-539.
[8] 毛伟, 贾红兵, 包志晶. Arps产量递减方程的相对渗透率通式及含水率预测[J]. 大庆石油地质与开发, 2015, 34(5): 52-57.
  MAO Wei, JIA Hongbin, BAO Zhijing. Relative permeability generalization and water content prediction for Arps' decreasing yield equation[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(5): 52-57.
[9] 杨志浩, 李治平, 陈奎, 等. 产能递减分析新方法及应用: 以大牛地致密气藏为例[J]. 断块油气田, 2015, 22(4): 484-487.
  YANG Zhihao, LI Zhiping, CHEN Kui, et al. New method and application for deliverability decline analysis: Taking Daniudi tight gas reservoir as an example[J]. Fault-Block Oil & Gas Field, 2015, 22(4): 484-487.
[10] 崔俊峰, 杨金路, 王民, 等. 基于随机森林算法的泥页岩孔隙度预测[J]. 油气地质与采收率, 2023, 30(6):13-21.
  CUI Junfeng, YANG Jinlu, WANG Min, et al. Shale porosity prediction based on random forest algorithm[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 13-21.
[11] 韩克宁, 王伟, 樊冬艳, 等. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发, 2023, 13(5): 647-656.
  HAN Kening, WANG Wei, FAN Dongyan, et al. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656.
[12] 刘文锋, 张旭阳, 盛舒遥, 等. 致密油产量递减分析新组合方法研究: 以玛湖致密油藏为例[J]. 油气藏评价与开发, 2021, 11(6): 911-916.
  LIU Wenfeng, ZHANG Xuyang, SHENG Shuyao, et al. Research on a new combination method of production decline analysis for tight oil: Cases study of Mahu tight reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 911-916.
[13] 王强, 曾济楚, 梁斌. 基于Arps算法的产量递减规律研究与应用[J]. 录井工程, 2021, 32(2): 142-146.
  WANG Qiang, ZENG Jichu, LIANG Bin. Research and application of yield diminishing law based on Arps algorithm[J]. Mud Logging Engineering, 2021, 32(2): 142-146.
[14] 黄帅, 彭彩珍. 基于灰色关联的产量递减因素分析[J]. 油气藏评价与开发, 2018, 8(4): 33-35.
  HUANG Shuai, PENG Caizhen. Study on production decline factors based on gray correlation[J]. Petroleum Reservoir Evaluation and Development, 2018, 8(4): 33-35.
[15] 李超, 王雨, 李文忠, 等. 甲型水驱曲线和产量递减法在渤海B油田的应用[J]. 复杂油气藏, 2023, 16(1): 100-103.
  LI Chao, WANG Yu, LI Wenzhong, et al. Application of type A water drive curve and production decline method in B Oilfield of Bohai Sea[J]. Complex Hydrocarbon Reservoirs, 2023, 16(1): 100-103.
[16] 潘豪, 曹砚锋, 文敏, 等. 油藏近井耦合确定的射孔方位与油田开发的关系[J]. 石油钻采工艺, 2023, 45(6): 729-737.
  PAN Hao, CAO Yanfeng, WEN Min, et al. The relationship between perforation orientation determined by near well coupling in oil reservoirs and oilfield development[J]. Oil Drilling & Production Technology, 2023, 45(6): 729-737.
[17] 计秉玉, 徐婷, 高兴军, 等. 水驱油田产量演变模式与开发阶段划分方法[J]. 石油勘探与开发, 2023, 50(2): 384-390.
  JI Bingyu, XU Ting, GAO Xingjun, et al. Production evolution patterns and development stage division of waterflooding oilfields[J]. Petroleum Exploration and Development, 2023, 50(2): 384-390.
[18] 刘青峰. 油气藏型储气库产能计算新方法[J]. 油气地质与采收率, 2023, 30(3): 159-166.
  LIU Qingfeng. A new method for production capacity calculation of gas storage in oil and gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 159-166.
[19] 王军磊, 位云生, 齐亚东, 等. 基于贝叶斯推断的产量递减综合预测新模型[J]. 天然气工业, 2022, 42(11): 77-87.
  WANG Junlei, WEI Yunsheng, QI Yadong, et al. A new integrated decline prediction model based on Bayesian inference[J]. Natural Gas Industry, 2022, 42(11): 77-87.
[20] 缪飞飞, 张宏友, 刘小鸿, 等. 水驱油田产量理论自然递减规律研究[J]. 石油地质与工程, 2014, 28(1): 61-64.
  MIU Feifei, ZHANG Hongyou, LIU Xiaohong, et al. Natural decline regularity study on water drive oilfield production[J]. Petroleum Geology and Engineering, 2014. 28(1): 61-64.
[21] 刘春春, 张聪, 贾慧敏, 等. 流体产出特征评价方法预测高阶煤储层产能[J]. 石油钻采工艺, 2024, 46(2): 189-198.
  LIU Chunchun, ZHANG Cong, JIA Huimin, et al. Evaluation method of fluid production characteristics for prediction of high-rank coal reservoir productivity[J]. Oil Drilling & Production Technology, 2024, 46(2): 189-198.
[22] 缪飞飞, 张宏友, 张言辉, 等. 一种水驱油田递减率指标开发效果评价的新方法[J]. 断块油气田, 2015, 22(3): 353-355.
  MIU Feifei, ZHANG Hongyou, ZHANG Yanhui, et al. New method for evaluating waterflooding effect by decline rate index[J]. Fault-Block Oil & Gas Field, 2015, 22(3): 353-355.
[23] 凌浩川, 孟智强, 石洪福, 等. 基于甲型水驱规律曲线的表征方法改进[J]. 岩性油气藏, 2018, 30(6): 125-130.
  LING Haochuan, MENG Zhiqiang, SHI Hongfu, et al. Improvement of characterization method based on type A water drive curve[J]. Lithologic Reservoirs, 2018, 30(6): 125-130.
[24] 吴忠维, 崔传智, 王振, 等. 特高含水期产量递减规律及递减率的计算公式[J]. 中国科技论文, 2018, 13(15): 1778-1782.
  WU Zhongwei, CUI Chuanzhi, WANG Zhen, et al. Production decline law and calculation formula of decline rate at ultra-high water cut stages[J]. China Sciencepaper, 2018, 13(15): 1778-1782.
[25] 徐赢, 潘有军, 周荣萍, 等. 油田注水开发期含水率随时间变化规律研究[J]. 岩性油气藏, 2016, 28(4): 127-132.
  XU Ying, PAN Youjun, ZHOU Rongping, et al. Water cut change law with time in waterflooding oilfield[J]. Lithologic Reservoirs, 2016, 28(4): 127-132.
[26] 丁心鲁, 黎丽丽, 郑函庆, 等. 超深层白云岩储层油气产能试油前预测方法[J]. 石油钻采工艺, 2024, 46(1): 67-77.
  DING Xinlu, LI Lili, ZHENG Hanqing, et al. Method for predicting oil-gas productivity before oil testing in ultra-deep dolomite reservoirs[J]. Oil Drilling & Production Technology, 2024, 46(1): 67-77.
[27] 黄广庆. 特高含水期产量递减分析及递减率表征公式[J]. 科学技术与工程, 2019, 19(15): 99-104.
  HUANG Guangqing. Production decline analysis and characterization formula of decline rate at the ultra-high water cut stage[J]. Science Technology and Engineering, 2019, 19(15): 99-104.
[28] 翟上奇, 雷源, 孙广义, 等. 基于油水相指数时变的相对渗透率计算方法[J]. 天然气与石油, 2019, 37(4): 73-77.
  ZHAI Shangqi, LEI Yuan, SUN Guangyi, et al. A method for calculating relative permeability based on time-varying of oil-water phase index[J]. Natural Gas and Oil, 2019, 37(4): 73-77.
[29] 郭智栋, 康毅力, 王玉斌, 等. 低压高含水致密气藏气-水相渗特征及生产动态响应[J]. 油气藏评价与开发, 2024, 14(1): 138-150.
  GUO Zhidong, KANG Yili, WANG Yubin, et al. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150.
[30] 谭吕, 张宁, 秦世利, 等. 考虑颗粒充填的水平井控水完井产量预测方法[J]. 石油钻采工艺, 2024, 46(1): 78-88.
  TAN Lyu, ZHANG Ning, QIN Shili, et al. A method for horizontal well production prediction with water control completion considering gravel packing[J]. Oil Drilling & Production Technology, 2024, 46(1): 78-88.
Outlines

/