Oil and Gas Exploration

Phase characteristics and main controlling factors of differential enrichment of condensate gas reservoirs in the Shunbei No. 4 fault zone

  • REN Hongyu ,
  • ZHANG Ziyi ,
  • XIAO Chongyang ,
  • TAN Tao ,
  • MA Dongchen ,
  • HUANG Shiwen
Expand
  • 1. Experimental Testing Technology Center, Sinopec Northwest Oilfield Company, Urumqi, Xinjiang 830011, China;
    2. Research Institute of Exploration and Development, Sinopec Northwest Oilfield Company, Urumqi, Xinjiang 830011, China;
    3. Sinopec Key Laboratory of Fracture‐cavity Reservoir Enhanced Oil Recovery, Urumqi, Xinjiang 830011, China

Received date: 2024-02-04

  Online published: 2025-01-26

Abstract

The Shunbei No. 4 fault zone is located in the central part of the Shuntuoguole Low Uplift. The reservoir type in this zone is a condensate gas reservoir controlled by fracture zones. This type of reservoir is rare both domestically and internationally. The phase characteristics of the condensate gas reservoir exhibit a clear north-south differentiation. In-depth research on the phase characteristics and the main controlling factors of this differentiation can provide valuable insights for the exploration and development of similar condensate gas reservoirs. This study employed various technical methods, including PVT (pressure-volume-temperature) high-pressure physical property experiments, organic geochemical analysis, and fluid inclusion analysis and testing. The results showed that the crude oil in the Shunbei No. 4 fault zone was characterized by a low freezing point, low sulfur content, and medium-to-high wax content. Within the zone, natural gas exhibited differential distribution in terms of methane molar fraction, gas-oil ratio, gas dryness coefficient, and CO2 molar fraction. PVT experiments indicated that the reservoir was a condensate gas reservoir with a large difference between formation pressure and dew-point pressure, classifying it as an unsaturated reservoir. The critical temperature and pressure in the northern section were significantly higher than in the middle and southern sections, showing a decreasing trend from north to south. From the perspective of hydrocarbon source rocks and reservoir formation, the differential enrichment of condensate gas reservoirs in the Shunbei No. 4 fault zone is primarily controlled by multiple sources of hydrocarbon supply and multiple phases of reservoir formation.

Cite this article

REN Hongyu , ZHANG Ziyi , XIAO Chongyang , TAN Tao , MA Dongchen , HUANG Shiwen . Phase characteristics and main controlling factors of differential enrichment of condensate gas reservoirs in the Shunbei No. 4 fault zone[J]. Petroleum Reservoir Evaluation and Development, 2025 , 15(1) : 56 -63 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.01.007

References

[1] 孙龙德. 塔里木盆地凝析气田开发[M]. 北京: 石油工业出版社, 2003.
  SUN Longde. Development of gas condensate field in Tarim Basin[M]. Beijing: Petroleum Industry Press, 2003.
[2] 王奥, 李菊花, 郑斌, 等. 多孔介质中凝析气相态特征[J]. 大庆石油地质与开发, 2021, 40(1): 61-67.
  WANG Ao, LI Juhua, ZHENG Bin, et al. Study on the phase behaviors of the condensate gas in porous media[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(1): 61-67.
[3] 王金铎, 曾治平, 徐冰冰, 等. 准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J]. 岩性油气藏, 2024, 36(1): 23-31.
  WANG Jinduo, ZENG Zhiping, XU Bingbing, et al. Fluid phase and hydrocarbon reservoir types of Permian Upper Urho Formation in Shawan Sag, Junggar Basin[J]. Lithologic Reservoirs, 2024, 36(1): 23-31.
[4] 任战利, 崔军平, 祁凯, 等. 深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40(2): 22-30.
  REN Zhanli, CUI Junping, QI Kai, et al. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J]. Natural Gas Industry, 2020, 40(2): 22-30.
[5] 张水昌, 朱光有, 杨海军, 等. 塔里木盆地北部奥陶系油气相态及其成因分析[J]. 岩石学报, 2011, 27(8): 2447-2460.
  ZHANG Shuichang, ZHU Guangyou, YANG Haijun, et al. The phases of Ordovician hydrocarbon and their origin in the Tabei uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2447-2460.
[6] 赵腾, 赵锐, 肖重阳, 等. 凝析气藏相态特征及开发方式研究进展[J]. 科技通报, 2023, 39(3): 1-7.
  ZHAO Teng, ZHAO Rui, XIAO Chongyang, et al. Research progress on phase behavior characteristics and development mode of condensate gas reservoir[J]. Bulletin of Science and Technology, 2023, 39(3): 1-7.
[7] 杨海军, 朱光有. 塔里木盆地凝析气田的地质特征及其形成机制[J]. 岩石学报, 2013, 29(9): 3233-3250.
  YANG Haijun, ZHU Guangyou. The condensate gas field geological characteristics and its formation mechanism in Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(9): 3233-3250.
[8] 孙冬胜, 金之钧, 吕修祥, 等. 库车前陆盆地迪那2气田成藏机理及成藏年代[J]. 石油与天然气地质, 2004, 25(5): 559-591.
  SUN Dongsheng, JIN Zhijun, LYU Xiuxiang, et al. Reservoiring mechanism and finalization period of Dina 2 gas field in Kuqa Basin[J]. Oil & Gas Geology, 2004, 25(5): 559-591.
[9] 李贤庆, 肖中尧, 胡国艺, 等. 库车坳陷天然气地球化学特征和成因[J]. 新疆石油地质, 2005, 26(5): 489-492.
  LI Xianqing, XIAO Zhongyao, HU Guoyi, et al. Origin and geochemistry of natural gas in Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology, 26(5): 489-492.
[10] 赵星星, 李斌, 邬光辉, 等. 塔里木盆地塔中Ⅲ区奥陶系多相态油气藏成因及富集模式[J]. 天然气地球科学, 2022, 33(1): 36-48.
  ZHAO Xingxing, LI Bin, WU Guanghui, et al. Genesis and enrichment model of Ordovician multi-phase oil and gas reservoirs in Tazhong Ⅲ block, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(1): 36-48.
[11] 孙东, 潘建国, 胡再元, 等. 塔里木盆地塔中Ⅲ区奥陶系碳酸盐岩油气成藏主控因素及有利区带[J]. 沉积学报, 2019, 37(4): 868-877.
  SUN Dong, PAN Jianguo, HU Zaiyuan, et al. Main factors controlling carbonate reservoir formation: Case study of Tazhong block Ⅲ, Tarim Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4): 868-877.
[12] 朱光有, 杨海军, 张斌, 等. 塔里木盆地迪那2大型凝析气田的地质特征及其成藏机制[J]. 岩石学报, 2012, 28(8): 2479-2492.
  ZHU Guangyou, YANG Haijun, ZHANG Bin, et al. The geological feature and origin of Dina 2 large gas field in Kuqa Depression, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(8): 2479-2492.
[13] 刘学利, 解慧, 陈勇, 等. 顺北高温超高压缝洞型油藏原油相态性质测定及分析[J]. 科学技术与工程, 2023, 23(31): 13361-13366.
  LIU Xueli, XIE Hui, CHEN Yong, et al. Determining and analysis for phase behavior of crude oil from high-temperature ultra-high-pressure seam-hole type reservoirs in Shunbei[J]. Science Technology and Engineering, 2023, 23(31): 13361-13366.
[14] 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262.
  MA Anlai, QI Lixin. Geochemical characteristics of oil and gas and difference in fluid phase in the ultra-deep ordovician reservoirs from No.4 fault of north Shuntuoguole Area of Tarim Basin, NW China[J]. Earth Science Frontiers, 2023, 30(6): 247-262.
[15] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
  QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
[16] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.
  QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51.
[17] 漆立新, 丁勇. 塔里木盆地顺北地区东西部海相油气成藏差异[J]. 石油实验地质, 2023, 45(1): 20-28.
  QI Lixin, DING Yong. Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 20-28.
[18] 顾忆, 万旸露, 黄继文, 等. “大埋深、高压力”条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164.
  GU Yi, WAN Yanglu, HUANG Jiwen, et al. Prospects for ultra-deep oil and gas in the “deep burial and high pressure” Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 157-164.
[19] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12.
  GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12.
[20] 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142.
  YUN Lu. Hydrocarbon accumulation of ultra-deep ordovician fault-karst reservoirs in Shunbei Area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142.
[21] 马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753.
  MA Anlai, JIN Zhijun, LI Huili, et al. Secondary alteration and preservation of ultra-deep ordovician oil reservoirs of north Shuntuoguole Area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
[22] 丁勇, 晏银华, 顾忆, 等. 塔里木盆地塔河油田成藏史与成藏机制[J]. 新疆石油地质, 2001, 22(6): 478-479.
  DING Yong, YAN Yinhua, GU Yi, et al. The reservoir-formed history and mechanism of Tahe Oilfield in Tarim Basin[J]. Xinjiang Petroleum Geology, 2001, 22(6): 478-479.
[23] 卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
  BU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
[24] 陈红汉, 吴悠, 丰勇, 等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014, 35(6): 806-819.
  CHEN Honghan, WU You, FENG Yong, et al. Timing and chronology of hydrocarbon charging in the ordovician of Tahe Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 806-819.
[25] 李萌, 汤良杰, 漆立新, 等. 塔北隆起南坡差异构造演化及其对油气成藏的控制[J]. 天然气地球科学, 2015, 26(2): 218-228.
  LI Meng, TANG Liangjie, QI Lixin, et al. Differential tectonic evolution and its controlling on hydrocarbon accumulation in the south slope of Tabei uplift[J]. Natural Gas Geoscience, 2015, 26(2): 218-228.
[26] 李剑, 李志生, 王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017, 44(4): 503-512.
  LI Jian, LI Zhisheng, WANG Xiaobo, et al. New indexes and charts for genesis identification of multiple natural gases[J]. Petroleum Exploration and Development, 2017, 44(4): 503-512.
Outlines

/