Oil and Gas Exploration

Characteristics and favorable area optimization of ultra-deep high-pressure basement reservoirs: A case study of Kun 2 block in Kunteyi gas reservoir, Qaidam Basin

  • CAO Hui ,
  • ZHANG Guoqing ,
  • XU Li ,
  • LI Zhexiang ,
  • WANG Haicheng ,
  • ZHAO Changyang ,
  • FEI Ying
Expand
  • 1. Plateau Saline Lacustrine Basin Oil-Gas Geology Key Laboratory of Qinghai Province, Dunhuang, Gansu 736202, China
    2. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China
    3. No. 2 Gas Production Plant, PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China

Received date: 2024-10-12

  Online published: 2025-05-28

Abstract

In recent years, basement gas reservoirs in Qaidam Basin have demonstrated significant potential for exploration and development. The Kun 2 block in Kunteyi gasfield, as an ultra-deep basement gas reservoir, poses significant challenges for reservoir prediction and favorable area selection due to its complex internal geology, strong heterogeneity, and dual-porosity characteristics of fractures and dissolution pores. By integrating geological, logging, seismic, and production data, this study developed an innovative integrated method combining “well-seismic integration, static-dynamic fusion, and multi-attribute synergy” to systematically characterize reservoir characteristics and predict natural gas accumulation zones, aiming to reveal the spatial distribution of ultra-deep basement reservoirs and provide guidance for the optimization of well placement. The results showed that: (1) The basement reservoirs in the Kun 2 block primarily consisted of granitic gneiss, with storage spaces characterized by a dual-porosity system of fractures and dissolution pores. The fractures exhibited a network-like development and were distributed in NE-SW trending bands in the plane view. Lateral heterogeneity was significant. The fracture densities ranged from 3 to 10 m-1, the average fracture porosity was about 0.015%, and the matrix porosity ranged from 1.8% to 6.8%. Overall, this demonstrated tight and low-permeability characteristics. (2) The development of dissolution pores was fault-controlled, primarily distributed along Kun 1, North Kun 2, and North Kun 101 faults. These faults formed fracture-pore coupled reservoirs. The interval 100-300 m below the top of the basement was a concentrated development zone, with the maximum reservoir thickness reaching up to 200 m. (3) The innovative integration of maximum likelihood attributes and structure tensor-acoustic impedance inversion technologies achieved high-precision characterization of the spatial distribution of fractures and dissolution pores. The prediction of maximum likelihood attributes revealed that high-angle fractures were mainly located on the upthrown side of faults, exhibiting an 85% consistency rate with imaging logging results. Additionally, the structure tensor-acoustic impedance inversion revealed that zones of dissolution pore development aligned closely with fault orientations, thereby validating the controlling mechanism of fault activity on dissolution process. (4) Based on reservoir classification and evaluation criteria, along with seismic prediction and dynamic production data, this study proposed a reservoir development model of “fault-controlled fractures, fracture-controlled pores” for the first time, indicating structurally high positions on upthrown side as the core zones of natural gas accumulation. Five favorable areas for natural gas accumulation were selected, including four on the upthrown side and one on the downthrown side. Among them, the NE-SW strip zones on both sides of the North Kun 2 Fault were identified as the optimal target areas.

Cite this article

CAO Hui , ZHANG Guoqing , XU Li , LI Zhexiang , WANG Haicheng , ZHAO Changyang , FEI Ying . Characteristics and favorable area optimization of ultra-deep high-pressure basement reservoirs: A case study of Kun 2 block in Kunteyi gas reservoir, Qaidam Basin[J]. Petroleum Reservoir Evaluation and Development, 2025 , 15(3) : 425 -433 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.009

References

1 李智, 岳欣欣, 杨云飞, 等. 泌阳凹陷栗园地区基岩油藏石油地质特征[J]. 西北地质, 2023, 56(5): 343-350.
  LI Zhi, YUE Xinxin, YANG Yunfei, et al. Petroleum geological characteristics of base rock pools in liyuan area, Biyang depression[J]. Northwestern Geology, 2023, 56(5): 343-350.
2 陈更新, 王建功, 杜斌山, 等. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
  CHEN Gengxin, WANG Jiangong, DU Binshan, et al. Characteristics of fractured bedrock gas reservoir in Jianbei gas field, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(4): 36-47.
3 马龙, 刘全新, 张景廉, 等. 论基岩油气藏的勘探前景[J]. 天然气工业, 2006, 26(1): 8-11.
  MA Long, LIU Quanxin, ZHANG Jinglian, et al. A discussion of exploration potentials of basement hydrocarbon reservoir[J]. Natural Gas Industry, 2006, 26(1): 8-11.
4 杨飞, 徐守余. 全球基岩油气藏分布及成藏规律[J]. 特种油气藏, 2011, 18(1): 7-11.
  YANG Fei, XU Shouyu. Global distribution and hydrocarbon accumulation pattern of basement reservoirs[J]. Special Oil & Gas Reservoirs, 2011, 18(1): 7-11.
5 郭明宇, 谭忠健, 姬建飞. 渤中凹陷X构造深层变质岩潜山含油气性录井评价方法研究[J]. 石油地质与工程, 2023, 37(1): 50-55.
  GUO Mingyu, TAN Zhongjian, JI Jianfei, et al. Logging evaluation method for oil-gas bearing properties of deep metamorhpic rock buried hill of X structure in Bozhong Sag[J]. Petroleum Geology & Engineering, 2023, 37(1): 50-55.
6 施宁, 刘敬寿, 张冠杰, 等. 基底变质岩深部潜山储层构造裂缝发育特征及主控因素: 以渤海湾盆地渤中B区块为例[J]. 石油实验地质, 2024, 46(4): 799-811.
  SHI Ning, LIU Jingshou, ZHANG Guanjie, et al. Characteristics and main controlling factors of structural fracture development in deep buried hill reservoirs of basement metamorphic rocks: A case study of B block, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2024, 46(4): 799-811.
7 郭子南. 兴隆台潜山基岩油藏储层分类评价[J]. 特种油气藏, 2022, 29(2): 64-71.
  GUO Zinan. Classification and evaluation of bedrock reservoirs in Xinglongtai buried hill[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 64-71.
8 范廷恩, 牛涛, 范洪军, 等. 渤中19-6凝析气田太古界潜山储层地质模式及开发策略[J]. 中国海上油气, 2021, 33(3): 85-92.
  FAN Tingen, NIU Tao, FAN Hongjun, et al. Geological model and development strategy of Archean buried hill reservoir in BZ19-6 condensate field[J]. China Offshore Oil and Gas, 2021, 33(3): 85-92.
9 窦立荣, 温志新, 王兆明, 等. 全球古老油气成藏组合资源潜力、重大发现及启示[J]. 石油学报, 2024, 45(8): 1163-1173.
  DOU Lirong, WEN Zhixin, WANG Zhaoming, et al. Resource potential, giant discoveries, and implications of ancient hydrocarbon plays worldwide[J]. Acta Petrolei Sinica, 2024, 45(8): 1163-1173.
10 刘杰, 徐国盛, 温华华, 等. 珠江口盆地惠州26-6构造古潜山—古近系油气成藏主控因素[J]. 天然气工业, 2021, 41(11): 54-63.
  LIU Jie, XU Guosheng, WEN Huahua, et al. Main factors controlling the formation of buried hill-Paleogene reservoirs in 26-6 structure of Huizhou, Pearl River Mouth Basin[J]. Natural Gas Industry, 2021, 41(11): 54-63.
11 孙秀建, 马峰, 白亚东, 等. 柴达木盆地阿尔金山山前带基岩气藏差异富集因素[J]. 新疆石油地质, 2020, 41(4): 394-401.
  SUN Xiujian, MA Feng, BAI Yadong, et al. Differentiated hydrocarbon enrichment factors of bedrock gas reservoir in piedmont belt of altun mountain, Qaidam basin[J]. Xinjiang Petroleum Geology, 2020, 41(4): 394-401.
12 李延丽, 苟迎春, 马新民, 等. 柴达木盆地坪西地区基岩气藏储层特征[J]. 天然气地球科学, 2019, 30(2): 219-227.
  LI Yanli, GOU Yingchun, MA Xinmin, et al. Reservoir characteristics of bedrock gas reservoir in Pingxi area, Qaidam Basin[J]. Natural Gas Geoscience, 2019, 30(2): 219-227.
13 苟迎春, 李延丽, 赵为永, 等. 阿尔金山前基岩气藏储层特征差异性研究[J]. 东华理工大学学报(自然科学版), 2023, 46(5): 499-509.
  GOU Yingchun, LI Yanli, ZHAO Weiyong, et al. Study on the difference in reservoir characteristics of bedrock gas reservoir in the altun piedmont[J]. Journal of East China University of Technology (Natural Science), 2023, 46(5): 499-509.
14 孙秀建, 杨巍, 白亚东, 等. 柴达木盆地基岩油气藏储盖特征及组合方式[J]. 天然气地球科学, 2019, 30(2): 228-236.
  SUN Xiujian, YANG Wei, BAI Yadong, et al. Characterization of the reservoir-caprock assemblage of the basement reservoir in the Qaidam Basin, China[J]. Natural Gas Geoscience, 2019, 30(2): 228-236.
15 李江涛, 付锁堂, 王任一, 等. 柴达木盆地阿尔金山前深层基岩气藏储集空间再认识与成储潜力区探讨[J]. 天然气工业, 2020, 40(2): 90-96.
  LI Jiangtao, FU Suotang, WANG Renyi, et al. Reservoir space and potential reservoir-formation areas in deep bedrock gas reservoirs in Altun forelands, Qaidam Basin: Recognition and discussion[J]. Natural Gas Industry, 2020, 40(2): 90-96.
16 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
  RAN Yixuan, WANG Jian, ZHANG Yi. Favorable exploration area and formation condition of bedrock reservoir in the of central paleo-uplift, northern Songliao Basin[J]. Lithologic Reservoirs, 2024, 36(6): 66-76.
17 孙秀建, 马峰, 白亚东, 等. 柴达木盆地阿尔金山山前带基岩气藏差异富集因素[J]. 新疆石油地质, 2020, 41(4): 394-401.
  SUN Xiujian, MA Feng, BAI Yadong, et al. Differentiated hydrocarbon enrichment factors of bedrock gas reservoir in piedmont belt of altun mountain, Qaidam basin[J]. Xinjiang Petroleum Geology, 2020, 41(4): 394-401.
18 陈更新, 王建功, 杜斌山, 等. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
  CHEN Gengxin, WANG Jiangong, DU Binshan, et al. Characteristics of fractured bedrock gas reservoir in Jianbei gas field, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(4): 36-47.
19 林艳波, 李若瑜, 唐颖, 等. 致密砂岩储层有利产建区评价标准[J]. 石油地质与工程, 2023, 37(1): 75-81.
  LIN Yanbo, LI Ruoyu, TANG Ying, et al. Evaluation criteria for favorable production and construction areas of tight sandstone reservoirs[J]. Petroleum Geology & Engineering, 2023, 37(1): 75-81.
20 徐国盛, 陈飞, 周兴怀, 等. 蓬莱9-1构造花岗岩古潜山大型油气田的成藏过程[J]. 成都理工大学学报(自然科学版), 2016, 43(2): 153-162.
  XU Guosheng, CHEN Fei, ZHOU Xinghuai, et al. Hydrocarbon accumulation process of large scale oil and gas field of granite buried hill in Penglai 9-1 structure, Bohai, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(2): 153-162.
21 刘震, 朱茂林, 刘惠民, 等. 花岗岩风化壳储层形成机理及分布特征: 以东营凹陷北带西段为例[J]. 石油学报, 2021, 42(2): 163-175.
  LIU Zhen, ZHU Maolin, LIU Huimin, et al. Formation mechanism and distribution characteristics of granitic weathering crust reservoir: A case study of the western segment of the northern belt of Dongying sag[J]. Acta Petrolei Sinica, 2021, 42(2): 163-175.
22 汪泽成, 江青春, 王居峰, 等. 基岩油气成藏特征与中国陆上深层基岩油气勘探方向[J]. 石油勘探与开发, 2024, 51(1): 28-38.
  WANG Zecheng, JIANG Qingchun, WANG Jufeng, et al. Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China[J]. Petroleum Exploration and Development, 2024, 51(1): 28-38.
23 齐宏伟, 沈杰. 定北地区上古生界裂缝发育特征及影响因素[J]. 世界石油工业, 2023, 30(4): 48-54.
  QI Hongwei, SHEN Jie. Fracture development characteristics and influencing factors of Upper Paleozoic in Dingbei area[J]. World Petroleum Industry, 2023, 30(4): 48-54.
24 赵林丰, 李晓静, 王晶晶, 等. 多属性神经网络反演在重力流储层预测中的应用[J]. 石油地质与工程, 2024, 38(5): 7-12.
  ZHAO Linfeng, LI Xiaojing, WANG Jingjing, et al. Application of multi-attribut neural network inversion in gravity flow reservoir prediction[J]. Petroleum Geology & Engineering, 2024, 38(5): 7-12.
25 曹磊. 松辽盆地长岭地区中基性火山岩勘探地球物理技术进展[J]. 世界石油工业, 2023, 30(4): 30-39.
  CAO Lei. Progress in geophysical techniques for exploration of medium basic volcanic rocks in the Changling area of Songliao Basin[J]. World Petroleum Industry, 2023, 30(4): 30-39.
26 崔璐. 大牛地气田奥陶系岩溶缝洞型储层识别预测方法[J]. 石油地质与工程, 2024, 38(4): 33-38.
  CUI Lu. Identification and prediction methods for the karst fractured-vuggy reservoir in the Ordovician Formation of Daniudi gas field[J]. Petroleum Geology & Engineering, 2024, 38(4): 33-38.
27 刘宇巍, 刘喜武, 韩磊, 等. 地震裂缝预测技术发展现状[J]. 世界石油工业, 2024, 31(3): 26-34.
  LIU Yuwei, LIU Xiwu, HAN Lei, et al. Development status of seismic fracture prediction technology[J]. World Petroleum Industry, 2024, 31(3): 26-34.
28 陈祖银, 张霞, 袁超, 等. 涠西南凹陷W油田古近系浊积体储层预测技术[J]. 石油地质与工程, 2024, 38(5): 13-16.
  CHEN Zuyin, ZHANG Xia, YUAN Chao, et al. Prediction technology for Paleogene turbidite reservoirs in W oilfield of Weixi’nan Sag[J]. Petroleum Geology & Engineering, 2024, 38(5): 13-16.
29 李雨桐, 杨西燕, 范存辉. 富有机质页岩天然裂缝表征研究进展[J]. 石油地质与工程, 2023, 37(1): 32-38.
  LI Yutong, YANG Xiyan, FAN Cunhui. Progress in characterization of natural fractures in organic-rich shale[J]. Petroleum Geology & Engineering, 2023, 37(1): 32-38.
Outlines

/