Petroleum Reservoir Evaluation and Development >
2025 , Vol. 15 >Issue 3: 463 - 470
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.03.013
Comparison of helium source characteristics between geothermal water-dissolved type and natural gas-associated type: A case study of Weihe Basin and northern Ordos Basin
Received date: 2024-09-09
Online published: 2025-05-28
Helium is a rare inert gas with indispensable applications in defense, aerospace, and medicine. However, helium resources available for use in China are extremely limited. To date, no independently accumulated helium resources have been found. Helium is primarily found in two forms: natural gas-associated and geothermal water-dissolved. This study focused on two typical basins—the Hangjinqi area in the northern Ordos Basin and the Weihe Basin—to investigate the genesis of helium. Helium isotope mass spectrometry analysis, rock radioactive element analysis and other methods were conducted to test the assgciated gas, core samples and potential helium source rock in the surrounding areas of the study area. The results show that helium in the Hangjinqi area in the northern Ordos Basin is typically crust-derived. While in Weihe Basin, high volume fractions of mantle-derived helium (up to 6.959%) were detected near deep-seated faults penetrating the basement, such as the Baoji-Xianyang fault and the Piedmont Fault of the Qinling Mountains. Both basins are located on the southwestern margin of the North China Plate and share a basement composed mainly of Archean-Proterozoic metamorphic-granite complexes, which serve as the main source rocks of helium formation. In addition, the main source rocks for helium gas in the Weihe Basin also include the uranium-rich granites of the Yanshanian period around the periphery and the concealed granitic bodies of the same period in the deep part of the basin. Due to the low mass fractions of U and Th elements or the low helium gas content of the desorbed gas in the basement sedimentary rock complexes, they cannot be regarded as the main source rocks for helium gas. The formation, migration and accumulation of helium gas in both areas are controlled by the source rocks and faults, and are closely related to the distribution of deep-seated fault zones. These findings provide a scientific basis for the further exploration and development of helium resources in the Weihe and northern Ordos basins.
Key words: Weihe Basin; northern Ordos Basin; helium; associated resources; source comparison
ZHANG Jin , ZHANG Fengqi , ZOU Yanrong , REN Xiaoqing , CHEN Hongguo , WANG Pengtao , RU Rong , ZHANG Wen . Comparison of helium source characteristics between geothermal water-dissolved type and natural gas-associated type: A case study of Weihe Basin and northern Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2025 , 15(3) : 463 -470 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.013
1 | 李剑, 王晓波, 徐朱松, 等. 中国氦气资源成藏规律与开发前景[J]. 天然气地球科学, 2024, 35(5): 851-868. |
LI Jian, WANG Xiaobo, XU Zhusong, et al. Helium resources accumulation regulations and their development prospects in China[J]. Natural Gas Geoscience, 2024, 35(5): 851-868. | |
2 | 陈新军, 丁一, 易晶晶, 等. 氦气资源的分类、特征及富集主控因素分析[J]. 石油实验地质, 2023, 45(1): 41-48. |
CHEN Xinjun, DING Yi, YI Jingjing, et al. Classified characteristics of helium gas resources and controlling factors for the enrichment[J]. Petroleum Geology & Experiment, 2023, 45(1): 41-48. | |
3 | 观研天下(北京)信息咨询有限公司. 中国氦气行业现状深度分析与投资前景预测报告(2024)[R/OL]. (2024-6-24)[2024-12-30]. . |
Guanyan Tianxia (Beijing) Information Consulting Co., Ltd.. In depth analysis of the current situation of China’s helium industry and investment prospect prediction report. (2024)[R/OL]. (2024-6-24)[2024-12-30]. . | |
4 | 唐金荣, 张宇轩, 周俊林, 等. 全球氦气产业链分析与中国应对策略[J]. 地质通报, 2023, 42(1): 1-13. |
TANG Jinrong, ZHANG Yuxuan, ZHOU Junlin, et al. Analysis of global helium industry chain and China’s strategy[J]. Geological Bulletin of China, 2023, 42(1): 1-13. | |
5 | 秦胜飞, 李济远, 王佳美, 等. 中国含油气盆地富氦天然气藏氦气富集模式[J]. 天然气工业, 2022, 42(7): 125-134. |
QIN Shengfei, LI Jiyuan, WANG Jiamei, et al. Helium enrichment model of helium-rich gas reservoirs in petroliferous basins in China[J]. Natural Gas Industry, 2022, 42(7): 125-134. | |
6 | 何发岐, 王杰, 赵永强, 等. 鄂尔多斯盆地东胜富氦气田成藏特征及其大地构造背景[J]. 古地理学报, 2022, 24(5): 937-950. |
HE Faqi, WANG Jie, ZHAO Yongqiang, et al. Accumulation characteristics of Dongsheng helium-rich gas field in Ordos Basin and its tectonic background[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(5): 937-950. | |
7 | 李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022, 44(3): 363-373. |
LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Research progress and new views on evaluation of helium resources[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 363-373. | |
8 | 刘雨桐, 段堃, 张晓宝, 等. 基岩型富氦气藏形成条件: 以柴达木盆地东坪气田和美国中部潘汉德—胡果顿气田为例[J]. 天然气地球科学, 2023, 34(4): 618-627. |
LIU Yutong, DUAN Kun, ZHANG Xiaobao, et al. Formation conditions of helium-rich gas in bedrock reservoirs: Taking Dongping Gas Field in Qaidam Basin and Panhandle-Hugoton Gas Field in central United States as examples[J]. Natural Gas Geoscience, 2023, 34(4): 618-627. | |
9 | 张宇轩, 吕鹏瑞, 牛亚卓, 等. 全球氦气资源成藏背景、地质特征与产能格局初探[J]. 西北地质, 2022, 55(4): 11-32. |
ZHANG Yuxuan, Pengrui LYU, NIU Yazhuo, et al. Preliminary study on the geological characteristics, resource potential and production capacity pattern of global helium resources[J]. Northwestern Geology, 2022, 55(4): 11-32. | |
10 | 彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田: 鄂尔多斯盆地东胜气田特征[J]. 中国科学: 地球科学, 2022, 52(6): 1078-1085. |
PENG Weilong, LIU Quanyou, ZHANG Ying, et al. Characteristics of Dongsheng gas field in Ordos Basin, the first super tight sandstone-type (hydrocarbon) helium-rich gas field in China[J]. Scientia Sinica (Terrae), 2022, 52(6): 1078-1085. | |
11 | 刘林, 芮会超. 渭河盆地结构特征及演化研究[J]. 地质力学学报, 2018, 24(1): 60-69. |
LIU Lin, RUI Huichao. Exploration on structural characteristics of the Weihe basin and its evolution[J]. Journal of Geomechanics, 2018, 24(1): 60-69. | |
12 | 丁振刚, 刘成林, 范立勇, 等. 斜坡—沉积源岩型氦气富集模式: 以鄂尔多斯盆地神木气田为例[J]. 石油实验地质, 2024, 46(6): 1177-1186. |
DING Zhengang, LIU Chenglin, FAN Liyong, et al. Slope-sedimentary source rock-type helium enrichment model: A case study of Shenmu Gas Field, Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(6): 1177-1186. | |
13 | 李钰, 符彩云. 渭河盆地上新统沉积相研究[J]. 地下水, 2015, 37(1): 185-187. |
LI Yu, FU Caiyun. Study on Miocene sedimentary facies of the Weihe River Basin[J]. Ground Water, 2015, 37(1): 185-187. | |
14 | 高吉华. 东胜气田锦66井区盒2气藏储层四性关系研究[J]. 石油地质与工程, 2019, 33(1): 52-55. |
GAO Jihua. Four-property relationship of He 2 gas reservoirs in Jin 66 well block of Dongsheng gas field[J]. Petroleum Geology and Engineering, 2019, 33(1): 52-55. | |
15 | 徐永昌, 沈平, 刘文汇, 等. 天然气中稀有气体地球化学[M]. 北京: 科学出版社, 1998. |
XU Yongchang, SHEN Ping, LIU Wenhui, et al. Noble gas geochemistry in natural gas[M]. Beijing: Science Press, 1998. | |
16 | 张福礼, 孙启邦, 王行运, 等. 渭河盆地水溶氦气资源评价[J]. 地质力学学报, 2012, 18(2): 195-202. |
ZHANG Fuli, SUN Qibang, WANG Xingyun, et al. Evaluation of water soluble helium resources in Weihe Basin[J]. Journal of Geomechanics, 2012, 18(2): 195-202. | |
17 | 王杰, 贾会冲, 陶成, 等. 鄂尔多斯盆地杭锦旗地区东胜气田氦气成因来源及富集规律[J]. 天然气地球科学, 2023, 34(4): 566-575. |
WANG Jie, JIA Huichong, TAO Cheng, et al. Source and enrichment regularity of helium in Dongsheng Gas Field of Hangjinqi area, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(4): 566-575. | |
18 | 孙明良, 徐永昌, 王先彬. 天然气中氦同位素的质谱分析[J]. 分析测试通报, 1991, 10(5): 50-55. |
SUN Mingliang, XU Yongchang, WANG Xianbin. Mass spectrometry analysis of helium isotope in natural gas[J]. Journal of Instrumental Analysis, 1991, 10(5): 50-55. | |
19 | 张瑾, 邹彦荣, 陈淑惠, 等. 咸阳市区富氦水溶气组分特征及成因分析[J]. 非常规油气, 2020, 7(1): 38-43, 8. |
ZHANG Jin, ZOU Yanrong, CHEN Shuhui, et al. The constituents characteristics and genetic analysis of water-soluble helium-rich gas in Xianyang[J]. Unconventional Oil & Gas, 2020, 7(1): 38-43, 8. | |
20 | 姚红生, 陈兴明, 周韬. 苏北盆地黄桥地区盐城组氦气成藏地质条件及富集规律[J]. 石油实验地质, 2024, 46(5): 906-915. |
YAO Hongsheng, CHEN Xingming, ZHOU Tao. Geological conditions and enrichment patterns of helium reservoir in Yancheng Formation, Huangqiao area, Subei Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 906-915. |
/
〈 |
|
〉 |