CCUS technology is a crucial technology for achieving the goal of “dual carbon”, involving process such as capture, transportation, injection, extraction and re-injection. Shengli Oilfield has developed essential engineering technologies for transportation and injection through years of exploration. To manage the phase changes of CO2 and the risks of long-distance leakage due to pressure loss and temperature variations, a safety transportation technology for long-distance CO2 pipelines was established. This technology is based on phase state control, ensuring efficient and cost-effective transportation. developed China’s first casing pipeline transport pump; and built China’s longest long-distance supercritical pressure CO2 pipeline, which makes up for the shortcomings of the long-distance CO2 transport in China. In order to meet the needs of high-pressure injection of large-displacement CO2 in the demonstration project, China’s first high-pressure dense-phase injection pump has been developed, realizing high-pressure dense-phase injection of 40 MPa. In view of the problems of high injection pressure, high gas-to-liquid ratio, low pumping efficiency, and corrosion of CO2, the engineering process technology of injection and extraction supporting such as safe injection of gas pipeline columns for pressure-free wells, multi-functional oil recovery pipeline columns, and corrosion prevention of CO2 repulsion has been formed to realize high-efficiency, safe injection and extraction and long-lasting corrosion protection. China's first multi-field, multi-node, one-million-ton CCUS demonstration project integrating pipeline transport engineering, injection equipment, flooding and sequestration, injection-extraction process, and gathering-transmission and re-injection, has been operating well and realizing “smooth, safe, efficient and green” operation in all aspects. This summary of the one-million-ton CCUS transportation-injection-extraction process and supporting equipment in Shengli Oilfield is intended to provide reference and guidance for the construction of subsequent CCUS project.