| [1] |
李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669-678.
|
|
LI Yang, KANG Zhijiang, XUE Zhaojie, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678.
|
| [2] |
吕心瑞, 孙建芳, 李红凯, 等. 塔里木盆地深层碳酸盐岩缝洞型油藏精细地质建模技术[J]. 石油与天然气地质, 2024, 45(5): 1195-1210.
|
|
Xinrui LYU, SUN Jianfang, LI Hongkai, et al. Fine geological modelling technology for deep fractured-vuggy carbonate oil reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2024, 45(5): 1195-1210.
|
| [3] |
郑松青, 杨敏, 康志江, 等. 塔河油田缝洞型碳酸盐岩油藏水驱后剩余油分布主控因素与提高采收率途径[J]. 石油勘探与开发, 2019, 46(4): 746-754.
|
|
ZHENG Songqing, YANG Min, KANG Zhijiang, et al. Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield[J]. Petroleum Exploration and Development, 2019, 46(4): 746-754.
|
| [4] |
王敬, 齐向生, 刘慧卿, 等. 缝洞型油藏水驱剩余油形成机制及换向注水增油机理[J]. 石油勘探与开发, 2022, 49(5): 965-976.
|
|
WANG Jing, QI Xiangsheng, LIU Huiqing, et al. Mechanisms of remaining oil formation by water flooding and enhanced oil recovery by reversing water injection in fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2022, 49(5): 965-976.
|
| [5] |
季晓靖, 蒲万芬, 金发扬, 等. 缝洞型油藏提高“阁楼油”采出程度物理模拟实验[J]. 断块油气田, 2016, 23(3): 375-379.
|
|
JI Xiaojing, PU Wanfen, JIN Fayang, et al. Physical simulation experiment research on enhancing “attic oil” recovery in fracture-cavity reservoir[J]. Fault-Block Oil & Gas Field, 2016, 23(3): 375-379.
|
| [6] |
孙瑞仪, 付美龙, 徐传奇, 等. 缝洞型油藏微观驱替规律可视化实验研究[J]. 新疆地质, 2021, 39(1): 167-170.
|
|
SUN Ruiyi, FU Meilong, XU Chuanqi, et al. Visualization of water yielding mechanism of oil well based on the fracture-cave reservoir in Tahe oilfield[J]. Xinjiang Geology, 2021, 39(1): 167-170.
|
| [7] |
代玲, 江任开, 孙常伟, 等. 缝洞型碳酸盐岩油藏大漏失水平井颗粒吞吐控水技术[J]. 石油钻探技术, 2024, 52(3): 91-97.
|
|
DAI Ling, JIANG Renkai, SUN Changwei, et al. Water control through particle huff and puff for horizontal wells with severe fluid loss in fractured-vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 91-97.
|
| [8] |
刘广燕, 张潇, 郭娜, 等. 缝洞型碳酸盐岩油藏堵水技术[J]. 精细石油化工, 2021, 38(1): 1-7.
|
|
LIU Guangyan, ZHANG Xiao, GUO Na, et al. Study of water shutoff technology for fracture-cavity carbonate reservoir[J]. Speciality Petrochemicals, 2021, 38(1): 1-7.
|
| [9] |
李亮, 张汝生, 伍亚军, 等. 缓膨颗粒对塔河油田缝洞型油藏的调堵机理分析[J]. 油田化学, 2020, 37(2): 245-249.
|
|
LI Liang, ZHANG Rusheng, WU Yajun, et al. Analysis on mechanism of blocking and profile control of slow-expanding particles to fracture-vuggy reservoirs in Tahe oilfield[J]. Oilfield Chemistry, 2020, 37(2): 245-249.
|
| [10] |
袁飞宇, 王鸿鹏, 乐平, 等. 缝洞型碳酸盐岩油藏单井注气影响因素模拟分析[J]. 非常规油气, 2023, 10(4): 86-94.
|
|
YUAN Feiyu, WANG Hongpeng, YUE Ping, et al. Simulation analysis of influencing factors of single well gas injection in fracture-vuggy carbonate reservoir[J]. Unconventional Oil & Gas, 2023, 10(4): 86-94.
|
| [11] |
邓惠, 杨胜来, 刘义成, 等. 缝洞型碳酸盐岩底水气藏水侵规律预测新方法[J]. 天然气勘探与开发, 2023, 46(2): 37-43.
|
|
DENG Hui, YANG Shenglai, LIU Yicheng, et al. A new method for predicting water invasion laws in fractured-vuggy carbonate gas reservoirs with bottom water[J]. Natural Gas Exploration and Development, 2023, 46(2): 37-43.
|
| [12] |
刘玉章, 吕静, 王家禄, 等. 水平井置胶成坝深部液流转向物理模拟[J]. 石油勘探与开发, 2011, 38(3): 332-335.
|
|
LIU Yuzhang, Jing LYU, WANG Jialu, et al. Physical modeling of in-depth fluid diversion by “gel dam” placed with horizontal wells[J]. Petroleum Exploration and Development, 2011, 38(3): 332-335.
|
| [13] |
吕静, 刘玉章, 王家禄, 等. 水平井置胶成坝深部液流转向数值模拟[J]. 西南石油大学学报(自然科学版), 2011, 33(4): 116-120.
|
|
Jing LYU, LIU Yuzhang, WANG Jialu, et al. Numerical simulation of “gel dam” in-depth fluid diversion technique in horizontal wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(4): 116-120.
|
| [14] |
吕静, 刘玉章, 高建, 等. 应用CT研究水平井置胶成坝深部液流转向机理[J]. 石油勘探与开发, 2011, 38(6): 733-737.
|
|
Jing LYU, LIU Yuzhang, GAO Jian, et al. Mechanism research of in-depth fluid diversion by “gel dam” place with horizontal well using X-ray CT[J]. Petroleum Exploration and Development, 2011, 38(6): 733-737.
|
| [15] |
许可, 刘卫东, 郭英, 等. 置胶成坝调剖技术的实验研究[J]. 科学技术与工程, 2015, 15(11): 187-190.
|
|
XU Ke, LIU Weidong, GUO Ying, et al. Experimental study of profile control with gel-dam[J]. Science Technology and Engineering, 2015, 15(11): 187-190.
|
| [16] |
徐传奇, 付美龙, 秦天宝, 等. 缝洞型碳酸盐岩油藏出水规律可视化物模实验[J]. 石油钻采工艺, 2020, 42(2): 195-200.
|
|
XU Chuanqi, FU Meilong, QIN Tianbao, et al. Visual physical simulation experiment on the water production laws of fractured-vuggy carbonate reservoirs[J]. Oil Drilling & Production Technology, 2020, 42(2): 195-200.
|
| [17] |
王敬, 徐智远, 刘俊源, 等. 断控缝洞型油藏底水驱剩余油分布规律及挖潜策略[J]. 石油勘探与开发, 2024, 51(5): 1101-1113.
|
|
WANG Jing, XU Zhiyuan, LIU Junyuan, et al. Distribution rules of remaining oil by bottom water flooding and potential exploitation strategy in fault-controlled fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2024, 51(5): 1101-1113.
|
| [18] |
郭万江, 付帅师, 李爱芬, 等. 缝洞型油藏物理实验模型制作新方法[J]. 科学技术与工程, 2021, 21(23): 9830-9836.
|
|
GUO Wanjiang, FU Shuaishi, LI Aifen, et al. A new method for manufacturing physical experimental models of fracture-cavity reservoir[J]. Science Technology and Engineering, 2021, 21(23): 9830-9836.
|
| [19] |
程晓军. 塔河油田缝洞型油藏水驱后气驱提高采收率可视化实验[J]. 新疆石油地质, 2018, 39(4): 473-479.
|
|
CHENG Xiaojun. Visualized gas drive EOR experiments in fractured-vuggy reservoirs after waterflooding in Tahe oilfield[J]. Xinjiang Petroleum Geology, 2018, 39(4): 473-479.
|
| [20] |
范劲, 郭艳, 李茂森, 等. 四川盆地抗CO2污染高密度水基钻井液[J]. 天然气勘探与开发, 2024, 47(4): 99-105.
|
|
FAN Jin, GUO Yan, LI Maosen, et al. High-density water-based drilling fluid with resistance to CO2 contamination and its application to Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(4): 99-105.
|
| [21] |
张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69.
|
|
ZHANG Chi, GUO Yuan, LI Ming. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57-69.
|
| [22] |
孙宝财, 武建文, 李雷, 等. 改进GA-BP算法的油气管道腐蚀剩余强度预测[J]. 西南石油大学学报(自然科学版), 2013, 35(3): 160-167.
|
|
SUN Baocai, WU Jianwen, LI Lei, et al. Prediction of remaining strength of corroded oil and gas pipeline based on improved GA-BP algorithm[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(3): 160-167.
|
| [23] |
闫绍栋, 刘斌, 李卫东, 等. 基于BP神经网络的油气管道振动检测系统[J]. 化工设备与管道, 2023, 60(5): 68-75.
|
|
YAN Shaodong, LIU Bin, LI Weidong, et al. Oil and gas pipeline vibration detection system based on BP neural network[J]. Process Equipment & Piping, 2023, 60(5): 68-75.
|
| [24] |
段艳强. 基于BP神经网络优化算法的煤岩识别误差分析[J]. 能源与节能, 2024, 29 (7): 4-7.
|
|
DUAN Yanqiang. Error analysis of coal-rock identification based on BP neural network optimization algorithm[J]. Energy and Energy Conservation, 2024, 29 (7): 4-7.
|
| [25] |
崔海, 余鑫磊, 庞继伟, 等. 采用BP-ANN和改进SVR的进水BOD软测量模型[J]. 哈尔滨工业大学学报, 2022, 54(2): 59-66.
|
|
CUI Hai, YU Xinlei, PANG Jiwei, et al. Influent BOD soft sensing models based on BP-ANN and improved SVR[J]. Journal of Harbin Institute of Technology, 2022, 54(2): 59-66.
|