[1] |
张可佳, 杨玉坤, 苏庆峰, 等. 电催化法去除炼油污水中聚丙烯酰胺实验研究[J]. 辽宁化工, 2019, 48(11): 1068-1070.
|
|
ZHANG Kejia, YANG Yukun, SU Qingfeng, et al. Experimental research on removal of polyacrylamide from refining wastewater by electrocatalytic method[J]. Liaoning Chemical Industry, 2019, 48(11): 1068-1070.
|
[2] |
李远超, 许凌露, 贺宇欣, 等. 不同聚丙烯酰胺用量对加工番茄产量及土壤环境的影响[J]. 现代农业科技, 2019, 47(21): 70-74.
|
|
LI Yuanchao, XU Linglu, HE Yuxin, et al. Effect of different polyacrylamide amount on processed tomato yield and soil environment[J]. Modern Agricultural Science and Technology, 2019, 47(21): 70-74.
|
[3] |
PAN Y C, SHE D L, SHI Z Q, et al. Do biochar and polyacrylamide have synergistic effect on net denitrification and ammonia volatilization in saline soils?[J]. Environmental Science and Pollution Research, 2021, 28(6): 59974-59987.
|
[4] |
ALBALASMEH A A, HAMDAN E H, GHARAIBEH M A, et al. Improving aggregate stability and hydraulic properties of sandy loam soil by applying polyacrylamide polymer[J]. Soil and Tillage Research, 2021, 206: 104821.
|
[5] |
LI O, PRZYBILLA M, WHITLEY C B. Proteomic analysis of mucopolysaccharidosis type I mouse brain with two-dimensional polyacrylamide gel electrophoresis[J]. Molecular Genetics and Metabolism, 2017, 120(1): S104.
|
[6] |
OKUDA T, TOYODA Y, MURAKAMI T, et al. Biodistribution/biostability assessment of siRNA after intravenous and intratracheal administration to mice, based on comprehensive analysis of in vivo/ex vivo/polyacrylamide gel electrophoresis fluorescence imaging[J]. International Journal of Pharmaceutics, 2019, 565: 294-305.
doi: S0378-5173(19)30369-2
pmid: 31078647
|
[7] |
JO H, SIM M, SEMIN K, et al. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation[J]. Acta biomaterialia, 2016, 48: 100-109.
|
[8] |
CORREDOR L M, HUSEIN M M, MAINI B B. Impact of PAM-grafted nanoparticles on the performance of hydrolyzed polyacrylamide solutions for heavy oil recovery at different salinities[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9888-9899.
|
[9] |
AHSANI T, TAMSILIAN Y, REZAEI A. Molecular dynamic simulation and experimental study of wettability alteration by hydrolyzed polyacrylamide for enhanced oil recovery: A new finding for polymer flooding process[J]. Journal of Petroleum Science and Engineering, 2021, 196(3): 108029.
|
[10] |
JI Y K, WALKINSHAW C, BELSHAW G, et al. Effect of polyacrylamide friction reducer on calcite dissolution rate at 25°C and implication for hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2020, 87(2): 103770.
|
[11] |
MOHAN A, RAO A, VANCSO J, et al. Towards enhanced oil recovery: Effects of ionic valency and pH on the adsorption of hydrolyzed polyacrylamide at model surfaces using QCM-D[J]. Applied Surface Science, 2021, 560: 149995.
|
[12] |
QIN L M, MYERS M, OTTO C, et al. Further insights into the performance of silylated polyacrylamide-based relative permeability modifiers in carbonate reservoirs and influencing factors[J]. ACS omega, 2021, 6(21): 13671-13683.
doi: 10.1021/acsomega.1c00820
pmid: 34095660
|
[13] |
刘存辉, 石昀, 韩英波, 等. 活性乳化聚丙烯酰胺驱油剂的研究[J]. 当代化工, 2020, 49(1): 113-116.
|
|
LIU Cunhui, SHI Yun, HAN Yingbo, et al. Study on polyacrylamide for oil displacement in offshore oilfields[J]. Contemporary Chemical Industry, 2020, 49(1): 113-116.
|
[14] |
WU W, MA J X, XU J, et al. Mechanistic insights into chemical conditioning by polyacrylamide with different charge densities and its impacts on sludge dewaterability[J]. Chemical Engineering Journal, 2021, 410(7): 128425.
|
[15] |
盛红坤, 张晨, 李国东, 等. 聚丙烯酰胺联合活性污泥对废水中铅的吸附性能研究[J]. 环境科学与管理, 2021, 46(1): 87-90.
|
|
SHENG Hongkun, ZHANG Chen, LI Guodong, et al. Adsorption of lead in wastewater using polyacrylamide combined with activated sludge[J]. Environmental Science and Management, 2021, 46(1): 87-90.
|
[16] |
冯霞, 袁敬敬, 赵义平, 等. PVA/PAM/TM水凝胶的制备及其对染料和氨氮废水的吸附性能[J]. 天津工业大学学报, 2021, 40(6): 14-21.
|
|
FNEG Xia, YUAN Jingjing, ZHAO Yiping, et al. Preparation of PVA/PAM/TM hydrogels and their adsorption properties for dyes and ammonia-nitrogen wastewater[J]. Journal of Tiangong University, 2021, 40(6): 14-21.
|
[17] |
周青, 谭长银, 曹雪莹, 等. 聚丙烯酰胺(PAM)及有机螯合剂对土壤镉有效性的影响[J]. 湖南师范大学自然科学学报, 2021, 44(6): 46-53.
|
|
ZHOU Qing, TAN Changyin, CAO Xueying, et al. Effects of polyacrylamide (PAM) and organic chelating agents on the cadmium availability in soil[J]. Journal of Natural Science of Hunan Normal University, 2021, 44(6): 46-53.
|
[18] |
冯齐云, 高宝玉, 岳钦艳. 不同阳离子聚丙烯酰胺有机脱水剂对污泥脱水性能的影响[J]. 环境科学, 2022, 43(2): 928-935.
|
|
FENG Qiyun, GAO Baoyu, YUE Qinyan, et al. Effect of different cationic polyacrylamide organic dehydrating agents on sludge dewatering performance[J]. Environmental Science, 2022, 43(2): 928-935.
|
[19] |
RELLEGADLA S, PRAJAPAT G, AGRAWAL A. Polymers for enhanced oil recovery: Fundamentals and selection criteria[J]. Applied Microbiology & Biotechnology, 2017, 101(15): 1-16.
|
[20] |
GAO C H, SHI J, ZHAO F J. Successful polymer flooding and surfactant-polymer flooding projects at Shengli oilfield from 1992 to 2012[J]. Journal of Petroleum Exploration and Production Technology, 2014, 4(1): 1-8.
|
[21] |
宫琦. 聚丙烯酰胺类油田化学剂生物毒性研究[D]. 北京: 中国石油大学(北京), 2020.
|
|
GONG Qi. Study of biotoxicity of acrylamide polymer as chemical agent used in the oil field[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[22] |
荣俊锋, 李龙洋, 巴鹏辉, 等. Fenton氧化协同活性炭吸附净化油田聚合物驱含PAM污水研究[J]. 应用化工, 2020, 49(4): 940-944.
|
|
RONG Junfeng, LI Longyang, BA Penghui, et al. Study on purification of polymer flooding wastewater containing PAM in oil field by Fenton oxidation and activated carbon adsorption[J]. Applied Chemical Industry, 2020, 49(4): 940-944.
|
[23] |
LIU Z M, GAO Z M, LU X G. Advanced treatment of pharmaceutical wastewater with a combined Fe-C microelectrolysis/EGSB system assisted by microalgae[J]. Separation Science and Technology, 2020, 56(16): 1-12.
|
[24] |
XUE X F. Application research of internal electrolysis as pre-treatment for berberine wastewater biodegradation[J]. Journal of Physics: Conference Series, 2021, 2009: 10-14,
|
[25] |
LI X, JIA Y, QIN Y, et al. Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms[J]. Chemosphere, 2021, 278: 130483.
|
[26] |
YANG Z M, MA Y P, LIU Y, et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C microelectrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414.
|
[27] |
王俊钧. 催化零价铁处理吉林化纤厂腈纶废水[D]. 北京: 北京化工大学, 2010.
|
|
WANG Junjun. Treatment on acrylic wastewater in Jilin chemical fiber factory by zero-valent iron[D]. Beijing: Beijing University of Chemical Technology, 2010.
|
[28] |
IKE I, LINDEN K, ORBELL J D, et al. Critical review of the science and sustainability of persulphate advanced oxidation processes[J]. Chemical Engineering Journal, 2018, 338: 651-669.
|
[29] |
HE Q F, SI S H, SONG L S, et al. Refractory petrochemical wastewater treatment by K2S2O8 assisted photocatalysis[J]. Saudi Journal of Biological Sciences, 2017, 26(4): 849-853.
|
[30] |
MANI P, KIM Y, LAKHERA S, et al. Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon[J]. Chemosphere, 2021, 277: 130225.
|
[31] |
LUTZE H, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72(1): 349-360.
|
[32] |
HUANG Y, YU X B, GAN H H, et al. Degradation and chlorination mechanism of fumaric acid based on SO4 -: An experimental and theoretical study[J]. Environmental Science and Pollution Research, 2021, 28(3): 1-10.
|
[33] |
王士顺. UV/NO3-体系降解有机染料效能及机理研究[D]. 济南: 山东建筑大学, 2021.
|
|
WANG Shishun. Study on degradation efficiency and mechanism of organic dyes by UV /NO3 -system[D]. Jinan: Shandong Jianzhu University, 2021.
|
[34] |
ZHAN L M, LI W T, LIU L, et al. Degradation of micropollutants in flow-through VUV/UV/H2O2 reactors: Effects of H2O2 dosage and reactor internal diameter[J]. Journal of Environmental Sciences, 2021, 110(12): 28-37.
|
[35] |
LUTZE H, BAKKOUR R, KERLIN N, et al. Formation of bromate in sulfate radical based oxidation: Mechanistic aspects and suppression by dissolved organic matter[J]. Water Research, 2014, 53(4): 370-377.
|
[36] |
HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science and Technology, 2005, 39(7): 2383-2388.
pmid: 15871280
|
[37] |
中华人民共和国生态环境部. 水质化学需氧量的测定重铬酸盐法: [S/OL]. 北京: 中国标准出版社, 2017.
|
|
Ministry of Ecology and Environment of the People's Republic of China. Water quality-Determination of the chemical oxygen demand-Di chromate method: [S/OL]. Beijing: China Standard Publishing House, 2017.
|
[38] |
WANG S N, YANG Q, CHEN F, et al. Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review[J]. Chemical Engineering Journal, 2017, 328: 927-942.
|
[39] |
KASIRI M B, ALEBOYEH H, SALARY A. Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks[J]. Environmental Science & Technology, 2008, 42(21): 7970-7975.
|
[40] |
AZIMI S C, SHIRINI F, PENDASHTEH A. Preparation and application of α-Fe2O3@TiO2@SO3H for photocatalytic degradation and COD reduction of woodchips industry wastewater[J]. Environmental Science and Pollution Research, 2021, 28(2): 1-24.
|
[41] |
YANG L, XUE J M, HE L Y, et al. Review on ultrasound assisted persulfate degradation of organic contaminants in wastewater: Influences, mechanisms and prospective[J]. Chemical Engineering Journal, 2019, 378: 122146.
|