Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (4): 550-558.doi: 10.13809/j.cnki.cn32-1825/te.2021.04.011
• Exploration & Development of Shale Oil and Gas • Previous Articles Next Articles
WEI Jiaxin1(),ZHANG Yan2,SHANG Jiaohui1,LYU Na1,LIU Wenchao3,WANG Hengkai4,MA Fujian5,ZHANG Qitao3
Received:
2021-01-18
Online:
2021-08-19
Published:
2021-08-26
CLC Number:
Jiaxin WEI,Yan ZHANG,Jiaohui SHANG, et al. Principal factor analysis on initial productivity in shale oil development: A case study of Block Li-151 in Changqing Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 550-558.
Table 2
Results of hierarchical cluster analysis for oil production wells in Block Li-151"
井名 | 水平井 段长(m) | 钻遇率(%) | 段数 | 簇数 | 加砂量(m3) | 入地液量(m3) | 闷井时间(d) | 抽深(m) | 动液面(m) | 孔隙度(%) | 渗透率 (10-3 μm2) | 含油 饱和度(%) | 日产油量(m3) | 递减 率 | 聚类 分析分类 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
华H5-5 | 862 | 79.7 | 12 | 57 | 2 097.0 | 17 366.6 | 47 | 1 480 | 1 288 | 9.95 | 1.25 | 61.21 | 13.33 | 0.21 | A |
华H47-1 | 1 147 | 77.5 | 13 | 61 | 1 631.5 | 14 901.6 | 21 | 1 502 | 1 399 | 10.94 | 1.73 | 37.02 | 12.46 | 0.41 | A |
华H1-7 | 1 150 | 52.4 | 15 | 58 | 2 394.6 | 20 310.4 | 101 | 1 395 | 1 354 | 9.50 | 0.15 | 55.73 | 13.65 | 0.18 | A |
华H21-1 | 1 190 | 46.9 | 17 | 86 | 2 392.9 | 22 486.1 | 144 | 1 250 | 925 | 10.17 | 0.19 | 55.72 | 16.56 | 0.02 | A |
华H21-2 | 1 192 | 77.2 | 14 | 74 | 2 189.1 | 22 895.3 | 158 | 1 250 | 1 010 | 10.18 | 0.18 | 54.18 | 13.69 | 0.15 | A |
华H12-4 | 1 237 | 73.4 | 15 | 73 | 2 024.3 | 19 729.1 | 77 | 1 334 | 688 | 8.73 | 0.78 | 42.83 | 19.11 | 0.21 | A |
华H21-3 | 1 310 | 68.9 | 15 | 82 | 1 884.9 | 24 039.6 | 80 | 1 350 | 954 | 10.46 | 0.19 | 55.94 | 15.73 | 0.03 | A |
华H11-5 | 1 369 | 70.8 | 17 | 63 | 3 046.2 | 19 984.7 | 38 | 1 389 | 1 124 | 9.14 | 0.80 | 40.85 | 17.76 | 0.26 | A |
华H7-1 | 1 385 | 42.2 | 12 | 56 | 1 870.7 | 16 244.1 | 91 | 1 298 | 1 224 | 9.98 | 1.06 | 42.06 | 17.38 | 0.58 | A |
华H2-1 | 1 387 | 62.8 | 20 | 78 | 1 273.0 | 16 782.6 | 12 | 1 475 | 1 324 | 8.67 | 1.71 | 51.18 | 14.07 | 0.30 | A |
华H61-4 | 1 430 | 45.6 | 16 | 94 | 2 557.7 | 32 314.3 | 166 | 1 500 | 1 238 | 10.83 | 1.61 | 40.07 | 14.44 | 0.06 | A |
华H61-3 | 1 469 | 54.0 | 15 | 80 | 2 086.4 | 20 366.1 | 179 | 1 600 | 1 400 | 11.03 | 1.63 | 43.31 | 8.70 | 0.26 | A |
华H10-3 | 1 520 | 81.7 | 16 | 104 | 2 505.1 | 23 194.9 | 98 | 1 350 | 1 022 | 9.17 | 0.60 | 48.06 | 17.79 | 0.05 | A |
华H11-3 | 1 537 | 55.1 | 16 | 67 | 2 414.8 | 24 105.7 | 61 | 1 400 | 837 | 9.37 | 0.84 | 40.60 | 22.97 | -0.10 | A |
华H15-2 | 2 096 | 63.4 | 22 | 90 | 2 350.6 | 18 282.8 | 114 | 1 453 | 1 211 | 9.33 | 0.13 | 51.23 | 13.56 | 0.03 | A |
华H6-5 | 1 401 | 75.6 | 19 | 91 | 2 439.9 | 25 595.8 | 71 | 1 355 | 1 308 | 9.88 | 1.33 | 42.06 | 13.04 | 0.44 | B |
华H4-3 | 1 405 | 67.2 | 22 | 99 | 4 480.4 | 27 918.3 | 80 | 1 301 | 931 | 9.67 | 1.45 | 42.14 | 18.64 | 0.27 | B |
华H25-2 | 1 488 | 87.1 | 20 | 120 | 3 172.5 | 28 051.0 | 62 | 1 470 | 555 | 11.49 | 1.68 | 34.24 | 18.19 | -0.51 | B |
华H2-2 | 1 520 | 78.0 | 25 | 61 | 4 330.1 | 33 565.4 | 86 | 1 433 | 1 316 | 8.70 | 1.56 | 48.88 | 19.42 | 0.36 | B |
华H6-7 | 1 535 | 84.2 | 23 | 92 | 4 158.3 | 27 932.6 | 50 | 1 242 | 1 011 | 9.82 | 1.30 | 34.94 | 17.37 | 0.06 | B |
华H37-1 | 1 535 | 79.9 | 23 | 123 | 3 859.1 | 29 677.1 | 70 | 1 500 | 1 442 | 9.77 | 1.01 | 48.37 | 8.99 | 0.45 | B |
华H6-3 | 1 536 | 76.0 | 23 | 120 | 3 132.7 | 32 527.1 | 239 | 1 400 | 1 098 | 9.76 | 0.68 | 41.92 | 14.73 | 0.15 | B |
华H6-4 | 1 536 | 64.7 | 19 | 96 | 2 574.9 | 26 157.2 | 82 | 1 245 | 1 216 | 10.28 | 1.37 | 44.15 | 10.84 | 0.25 | B |
华H61-2 | 1 540 | 74.0 | 19 | 114 | 3 060.9 | 26 665.8 | 146 | 1 200 | 586 | 10.63 | 1.02 | 41.87 | 9.77 | 0 | B |
华H37-2 | 1 545 | 77.8 | 20 | 113 | 3 556.9 | 27 421.5 | 81 | 1 400 | 1 388 | 9.09 | 0.49 | 43.57 | 8.05 | 0.47 | B |
华H5-1 | 1 555 | 98.6 | 25 | 126 | 4 213.6 | 36 400.6 | 47 | 1 357 | 924 | 9.47 | 1.16 | 46.09 | 18.82 | 0.56 | B |
华H1-4 | 1 594 | 82.5 | 27 | 124 | 3 843.9 | 35 895.6 | 58 | 1 406 | 1 135 | 10.35 | 0.18 | 57.32 | 24.26 | 0.10 | B |
华H41-5 | 1 599 | 78.0 | 16 | 181 | 3 666.2 | 28 938.8 | 95 | 1 350 | 1 322 | 9.57 | 1.30 | 35.91 | 7.44 | 0.28 | B |
华H30-4 | 1 638 | 75.2 | 21 | 118 | 3 330.1 | 28 674.2 | 95 | 1 348 | 455 | 9.31 | 1.48 | 33.65 | 15.67 | 0.27 | B |
华H6-2 | 1 681 | 87.8 | 25 | 126 | 3 416.5 | 33 497.9 | 100 | 1 350 | 1 168 | 9.55 | 0.76 | 44.15 | 13.62 | 0.16 | B |
华H10-1 | 1 700 | 86.3 | 22 | 130 | 3 356.8 | 29 887.5 | 98 | 1 206 | 988 | 10.11 | 1.16 | 41.68 | 14.71 | 0.09 | B |
华H11-1 | 1 719 | 69.3 | 22 | 97 | 4 284.8 | 30 376.6 | 41 | 1 246 | 726 | 9.37 | 1.13 | 43.35 | 28.57 | 0 | B |
华H14-4 | 1 863 | 85.9 | 24 | 147 | 3 811.1 | 30 520.4 | 145 | 1 346 | 511 | 9.94 | 0.18 | 53.63 | 17.53 | -0.08 | B |
华H13-1 | 1 865 | 82.3 | 23 | 206 | 2 948.9 | 29 907.1 | 140 | 1 500 | 628 | 9.67 | 1.23 | 45.50 | 17.54 | 0.15 | B |
华H14-3 | 1 870 | 82.7 | 23 | 146 | 3 580.3 | 30 735.2 | 159 | 1 349 | 589 | 9.07 | 0.12 | 52.22 | 16.54 | 0.01 | B |
华H14-2 | 1 967 | 81.9 | 26 | 160 | 3 943.5 | 34 295.0 | 99 | 1 342 | 522 | 11.30 | 0.26 | 57.52 | 16.39 | -0.10 | B |
华H13-4 | 2 035 | 74.4 | 30 | 129 | 4 821.6 | 36 808.5 | 152 | 1 505 | 533 | 8.91 | 0.93 | 45.33 | 16.75 | 0.00 | B |
华H3-2 | 2 062 | 55.6 | 27 | 120 | 3 831.7 | 34 593.7 | 27 | 1 349 | 1 299 | 9.63 | 1.34 | 53.06 | 16.28 | 0.33 | B |
华H15-1 | 2 070 | 80.7 | 32 | 127 | 3 087.9 | 27 307.7 | 61 | 1 299 | 566 | 11.30 | 0.27 | 54.42 | 17.58 | 0.10 | B |
华H7-2 | 2 082 | 87.3 | 28 | 132 | 3 858.0 | 34 627.7 | 64 | 1 400 | 722 | 9.35 | 0.91 | 42.51 | 20.64 | 0.39 | B |
华H25-1 | 1 070 | 47.6 | 11 | 52 | 1 455.8 | 14 088.3 | 58 | 1 396 | 825 | 11.26 | 2.59 | 35.29 | 9.21 | 0.22 | C |
华H7-5 | 2 039 | 68.1 | 31 | 85 | 5 208.7 | 35 710.8 | 54 | 1 109 | 722 | 6.80 | 0.78 | 40.64 | 28.86 | 0.33 | D |
Table 3
Correlation coefficient matrix for oil production wells in Block Li-151"
水平井段长 | 钻遇率 | 段数 | 簇数 | 加砂量 | 入地液量 | 闷井时间 | 抽深 | 动液面 | 孔隙度 | 渗透率 | 饱和度 | 日产油 | 递减率 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水平井段长 | 1.000 | 0.293 | 0.834 | 0.640 | 0.621 | 0.657 | 0.096 | -0.134 | -0.420 | -0.240 | -0.281 | 0.035 | 0.327 | -0.153 |
钻遇率 | 0.293 | 1.000 | 0.466 | 0.549 | 0.462 | 0.477 | -0.088 | -0.053 | -0.286 | -0.074 | -0.184 | 0.025 | 0.109 | -0.091 |
压裂段数 | 0.834 | 0.466 | 1.000 | 0.550 | 0.785 | 0.801 | -0.031 | -0.174 | -0.376 | -0.289 | -0.252 | 0.142 | 0.436 | -0.069 |
簇数 | 0.640 | 0.549 | 0.550 | 1.000 | 0.492 | 0.647 | 0.279 | 0.000 | -0.399 | 0.054 | -0.195 | 0.019 | -0.024 | -0.213 |
加砂量 | 0.621 | 0.462 | 0.785 | 0.492 | 1.000 | 0.852 | -0.011 | -0.284 | -0.319 | -0.381 | -0.140 | -0.074 | 0.440 | -0.032 |
入地液量 | 0.657 | 0.477 | 0.801 | 0.647 | 0.852 | 1.000 | 0.174 | -0.173 | -0.321 | -0.213 | -0.181 | 0.024 | 0.376 | -0.109 |
闷井时间 | 0.096 | -0.088 | -0.031 | 0.279 | -0.011 | 0.174 | 1.000 | 0.089 | -0.159 | 0.134 | -0.298 | 0.072 | -0.259 | -0.265 |
抽深 | -0.134 | -0.053 | -0.174 | 0.000 | -0.284 | -0.173 | 0.089 | 1.000 | 0.323 | 0.217 | 0.265 | 0.043 | -0.327 | 0.031 |
动液面 | -0.420 | -0.286 | -0.376 | -0.399 | -0.319 | -0.321 | -0.159 | 0.327 | 1.000 | -0.027 | 0.189 | 0.075 | -0.444 | 0.543 |
孔隙度 | -0.240 | -0.074 | -0.289 | 0.054 | -0.381 | -0.213 | 0.134 | 0.217 | -0.027 | 1.000 | 0.157 | 0.034 | -0.408 | -0.330 |
渗透率 | -0.281 | -0.184 | -0.252 | -0.195 | -0.140 | -0.181 | -0.298 | 0.265 | 0.189 | 0.157 | 1.000 | -0.636 | -0.219 | 0.249 |
饱和度 | 0.035 | 0.025 | 0.142 | 0.019 | -0.074 | 0.024 | 0.072 | 0.043 | 0.075 | 0.034 | -0.636 | 1.000 | 0.068 | -0.099 |
前三个月 日产油 | 0.327 | 0.109 | 0.436 | -0.024 | 0.440 | 0.376 | -0.259 | -0.327 | -0.444 | -0.408 | -0.219 | 0.068 | 1.000 | -0.209 |
递减率 | -0.153 | -0.091 | -0.069 | -0.213 | -0.032 | -0.109 | -0.265 | 0.031 | 0.543 | -0.330 | 0.249 | -0.099 | -0.209 | 1.000 |
Table 4
Correlation coefficient matrix for Type A wells in Block Li-151"
水平井段长 | 钻遇率 | 段数 | 簇数 | 加砂量 | 入地液量 | 闷井时间 | 抽深 | 动液面 | 孔隙度 | 渗透率 | 饱和度 | 日产油 | 递减率 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水平井段长 | 1.000 | -0.220 | 0.731 | 0.527 | 0.199 | 0.126 | 0.211 | 0.159 | -0.036 | -0.214 | -0.162 | -0.284 | 0.098 | -0.291 |
钻遇率 | -0.220 | 1.000 | -0.113 | 0.016 | -0.080 | -0.270 | -0.419 | -0.015 | -0.145 | -0.221 | -0.058 | 0.174 | -0.036 | -0.033 |
压裂段数 | 0.731 | -0.113 | 1.000 | 0.542 | 0.126 | 0.088 | 0.004 | 0.124 | -0.047 | -0.463 | -0.120 | 0.065 | 0.034 | -0.432 |
簇数 | 0.527 | 0.016 | 0.542 | 1.000 | 0.180 | 0.567 | 0.476 | 0.002 | -0.228 | 0.012 | -0.149 | 0.047 | -0.033 | -0.568 |
加砂量 | 0.199 | -0.080 | 0.126 | 0.180 | 1.000 | 0.504 | 0.342 | -0.179 | -0.248 | -0.079 | -0.406 | -0.095 | 0.306 | -0.454 |
入地液量 | 0.126 | -0.270 | 0.088 | 0.566 | 0.504 | 1.000 | 0.575 | -0.091 | -0.339 | 0.245 | -0.145 | -0.064 | 0.210 | -0.663 |
闷井时间 | 0.211 | -0.419 | 0.004 | 0.476 | 0.342 | 0.575 | 1.000 | -0.091 | -0.048 | 0.476 | -0.256 | 0.089 | -0.310 | -0.297 |
抽深 | 0.159 | -0.015 | 0.124 | 0.002 | -0.179 | -0.091 | -0.091 | 1.000 | 0.672 | 0.290 | 0.710 | -0.274 | -0.557 | 0.121 |
动液面 | -0.036 | -0.145 | -0.047 | -0.228 | -0.248 | -0.339 | -0.048 | 0.672 | 1.000 | 0.380 | 0.507 | -0.007 | -0.768 | 0.504 |
孔隙度 | -0.214 | -0.221 | -0.463 | 0.012 | -0.079 | 0.245 | 0.476 | 0.290 | 0.380 | 1.000 | 0.261 | -0.112 | -0.549 | 0.109 |
渗透率 | -0.162 | -0.058 | -0.200 | -0.149 | -0.406 | -0.150 | -0.256 | 0.710 | 0.507 | 0.261 | 1.000 | -0.525 | -0.291 | 0.487 |
饱和度 | -0.284 | 0.174 | 0.065 | 0.047 | -0.095 | -0.064 | 0.089 | -0.274 | -0.007 | -0.112 | -0.525 | 1.000 | -0.234 | -0.295 |
日产油 | 0.098 | -0.036 | 0.034 | -0.033 | 0.306 | 0.210 | -0.310 | -0.557 | -0.768 | -0.549 | -0.291 | -0.234 | 1.000 | -0.314 |
递减率 | -0.291 | -0.033 | -0.432 | -0.568 | -0.454 | -0.663 | -0.297 | 0.121 | 0.504 | 0.109 | 0.487 | -0.295 | -0.314 | 1.000 |
Table 5
Correlation coefficient matrix for type B wells in Block Li-151"
水平井段长 | 钻遇率 | 段数 | 簇数 | 加砂量 | 入地液量 | 闷井时间 | 抽深 | 孔隙度 | 渗透率 | 饱和度 | 日产油 | 递减率 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水平井段长 | 1.000 | -0.013 | 0.706 | 0.468 | 0.190 | 0.450 | 0.046 | 0.125 | 0.029 | -0.443 | 0.495 | 0.260 | -0.175 |
钻遇率 | -0.013 | 1.000 | 0.148 | 0.295 | 0.046 | 0.238 | 0.054 | 0.189 | 0.111 | -0.275 | -0.019 | 0.103 | -0.115 |
压裂段数 | 0.706 | 0.148 | 1.000 | 0.033 | 0.412 | 0.644 | -0.087 | 0.257 | 0.028 | -0.437 | 0.611 | 0.487 | -0.034 |
簇数 | 0.468 | 0.295 | 0.033 | 1.000 | -0.130 | 0.159 | 0.321 | 0.279 | 0.153 | -0.332 | 0.160 | -0.155 | -0.192 |
加砂量 | 0.190 | 0.046 | 0.412 | -0.130 | 1.000 | 0.594 | -0.183 | 0.168 | -0.420 | -0.036 | 0.167 | 0.430 | 0.034 |
入地液量 | 0.450 | 0.238 | 0.644 | 0.159 | 0.594 | 1.000 | 0.039 | 0.399 | -0.287 | -0.259 | 0.448 | 0.435 | 0.068 |
闷井时间 | 0.046 | 0.054 | -0.087 | 0.321 | -0.183 | 0.039 | 1.000 | 0.159 | -0.124 | -0.321 | -0.001 | -0.257 | -0.236 |
抽深 | 0.125 | 0.189 | 0.257 | 0.279 | 0.168 | 0.399 | 0.159 | 1.000 | -0.228 | -0.020 | 0.127 | 0.006 | 0.066 |
动液面 | -0.476 | -0.231 | -0.279 | -0.338 | -0.064 | -0.052 | -0.270 | 0.062 | -0.301 | 0.232 | -0.038 | -0.393 | 0.630 |
孔隙度 | 0.026 | 0.111 | 0.028 | 0.153 | -0.420 | -0.287 | -0.124 | -0.228 | 1.000 | -0.159 | 0.149 | -0.025 | -0.564 |
渗透率 | -0.443 | -0.275 | -0.437 | -0.332 | -0.036 | -0.259 | -0.321 | -0.020 | -0.159 | 1.000 | -0.696 | -0.071 | 0.167 |
饱和度 | 0.495 | -0.019 | 0.611 | 0.160 | 0.167 | 0.448 | -0.001 | 0.127 | 0.149 | -0.696 | 1.000 | 0.246 | 0.011 |
日产油 | 0.260 | 0.103 | 0.487 | -0.155 | 0.430 | 0.435 | -0.257 | 0.006 | -0.025 | -0.071 | 0.246 | 1.000 | -0.280 |
递减率 | -0.175 | -0.115 | -0.034 | -0.192 | 0.034 | 0.068 | -0.236 | 0.066 | -0.564 | 0.167 | 0.011 | -0.280 | 1.000 |
Table 7
Anlysis results of controlling factors in Li-151 block"
项目 | 水平井段长 | 钻遇率 | 段数 | 簇数 | 加砂量 | 入地液量 | 闷井时间 | 抽深 | 动液面 | 孔隙度 | 渗透率 |
---|---|---|---|---|---|---|---|---|---|---|---|
日产油(全区) | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 |
日产油(A类) | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 高 | 极高 | 高 | 中低 |
日产油(B类) | 中低 | 中低 | 高 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 |
递减率(全区) | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 高 | 中低 | 中低 |
递减率(A类) | 中低 | 中低 | 中低 | 高 | 中低 | 高 | 中低 | 中低 | 高 | 中低 | 中低 |
递减率(B类) | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 中低 | 高 | 高 | 中低 |
[1] | 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5):698-710. |
FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5):698-710. | |
[2] |
YANG Y F, WANG K, ZHANG L, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251(6):683-692.
doi: 10.1016/j.fuel.2019.03.083 |
[3] | 雷浩, 何建华, 胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏, 2019, 26(3):94-98. |
LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3):94-98. | |
[4] | 李世臻, 刘卫彬, 王丹丹, 等. 中美陆相页岩油地质条件对比[J]. 地质论评, 2017, 63(S1):39-40. |
LI Shizhen, LIU Weibin, WANG Dandan, et al. Continental shale oil geological conditions of China and the United States[J]. Geological Review, 2017, 63(S1):39-40. | |
[5] | 付茜. 中国页岩油勘探开发现状、挑战及前景[J]. 石油钻采工艺, 2015, 37(4):58-62. |
FU Qian. The status, challenge and prospect of shale oil exploration and development in China[J]. Oil Drilling & Production Technology, 2015, 37(4):58-62. | |
[6] | 杨跃明, 黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业, 2019, 39(6):22-33. |
YANG Yueming, HUANG Dong. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6):22-33. | |
[7] | 朱彤. 四川盆地陆相页岩油气富集主控因素及类型[J]. 石油实验地质, 2020, 42(3),345-354. |
ZHU Tong. Main controlling factors and types of continental shale oil and gas enrichment in Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3):345-354. | |
[8] | 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4):489-505. |
LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4):489-505. | |
[9] |
LIU W C, ZHANG Q T, ZHU W Y. Numerical simulation of multi-stage fractured horizontal well in low-permeable oil reservoir with threshold pressure gradient with moving boundary[J]. Journal of Petroleum Science and Engineering, 2019, 178:1112-1127.
doi: 10.1016/j.petrol.2019.04.033 |
[10] |
ZHANG Q T, ZHU W Y, LIU W C, et al. Numerical simulation of fractured vertical well in low-permeable oil reservoir with proppant distribution in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2020, 195:107587.
doi: 10.1016/j.petrol.2020.107587 |
[11] | 霍进, 支东明, 郑孟林, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油藏特征与形成主控因素[J]. 石油实验地质, 2020, 42(4):506-512. |
HUO Jin, ZHI Dongming, ZHENG Menglin, et al. Characteristics and main controls of shale oil reservoirs in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4):506-512. | |
[12] |
YANG L, ZHANG X H, ZHOU T, et al. The effects of ions diffusion on imbibition oil recovery in salt-rich shale oil reservoirs[J]. Journal of Geophysics and Engineering, 2019, 16(3):525-540.
doi: 10.1093/jge/gxz025 |
[13] | ZANG Y J, GE H K, SHEN Y H, et al. Evaluating the potential for oil recovery by imbibition and time-delay effect in tight reservoirs during shut-in[J]. Journal of Petroleum Science and Engineering, 2020, 184(2):1-8. |
[14] | 江昀, 许国庆, 石阳, 等. 致密岩心带压渗吸规律实验研究[J]. 石油实验地质, 2021, 43(1):144-153. |
JIANG Yun, XU Guoqing, SHI Yang, et al. Forced imbibition in tight sandstone cores[J]. Petroleum Geology & Experiment, 2021, 43(1):144-153. | |
[15] | 马莉, 张驰, 刘敦卿, 等. 涪陵页岩气田压裂后焖井工艺适应性初探[J]. 特种油气藏. 2019, 26(1):147-151. |
MA Li, ZHANG Chi, LIU Dunqing, et al. Preliminary study on the well-soaking adaptability after fracturing in Fulling shale gasfield[J]. Special Oil & Gas Reservoirs, 2019, 26(1):147-151. | |
[16] |
MA X H, LI X Z, LIANG F, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3):594-602.
doi: 10.1016/S1876-3804(20)60076-3 |
[17] |
KIM G, LEE H, CHEN Z H, et al. Effect of reservoir characteristics on the productivity and production forecasting of the Montney shale gas in Canada[J]. Journal of Petroleum Science and Engineering, 2019, 182(1):106276.
doi: 10.1016/j.petrol.2019.106276 |
[18] | 汤志, 镇国钧, 陈兴炳, 等. 昭通黄金坝YS108区块页岩气产能主控因素分析[J]. 新疆石油天然气, 2018, 14(3):58-62. |
TANG Zhi, ZHEN Guojun, CHEN Xingbing, et al. Analysis of master factor of shale gas production in Huangjinbays108 Block in Zhaotong City[J]. Xinjiang Oil & Gas, 2018, 14(3):58-62. | |
[19] | 马文礼, 李治平, 高闯, 等. 页岩气井初期产能主控因素“Pearson-MIC”分析方法[J]. 中国科技论文, 2018, 13(15):1765-1771. |
MA Wenli, LI Zhiping, GAO Chuang, et al. “Pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells[J]. China Sciencepaper, 2018, 13(15):1765-1771. | |
[20] | 郭建成, 林伯韬, 向建华, 等. 四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J]. 石油科学通报, 2019, 4(3):273-287. |
GUO Jiancheng, LIN Botao, XIANG Jianhua, et al. Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan basin after fracturing[J]. Petroleum Science Bulletin, 2019, 4(3):273-287. | |
[21] |
REVELLE W. Hierarchical cluster analysis and the internal structure of tests[J]. Multivariate Behavioral Research, 1979, 14(1):57-74.
doi: 10.1207/s15327906mbr1401_4 |
[22] | KARAMIZADEH S, ABDULLAH S M, MANAF A A, et al. An overview of principal component analysis[J]. Journal of Signal and Information Processing, 2013, 4(3B):173. |
[23] | 檀朝东, 贺甲元, 周彤, 等. 基于PCA-BNN的页岩气压裂施工参数优化[J]. 西南石油大学学报(自然科学版), 2020, 42(6):56-62. |
SHAN Chaodong, HE Jiayuan, ZHOU Tong, et al. A Study on the optimization of fracturing operation parameters based on PCA-CNN[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6):56-62. | |
[24] | 刘彪, 许瑞, 王居贺, 等. 基于改进的主成分分析法的钻头优选评价模型[J]. 石油机械, 2020, 48(9):8-14. |
LIU Biao, XU Rui, WANG Juhe, et al. Bit selection and evaluation model based on improved principal component analysis[J]. China Petroleum Machinery, 2020, 48(9):8-14. |
[1] | YU Wenduan, GAO Yuqiao, ZAN Ling, MA Xiaodong, YU Qilin, LI Zhipeng, ZHANG Zhihuan. Distribution of oil bearing and shale oil-rich strata in the second member of Funing Formation in Qintong Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 688-698. |
[2] | WANG Xinqian, YU Wenduan, MA Xiaodong, ZHOU Tao, TAI Hao, CUI Qinyu, DENG Kong, LU Yongchao, LIU Zhanhong. Identification and application of shale lithofacies based on conventional logging curves: A case study of the second member of Funing Formation in Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 699-706. |
[3] | ZHANG Fei, LI Qiuzheng, JIANG Aming, DENG Ci. Application of shale oil 2D NMR logging evaluation in Huazhuang area of Gaoyou Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 707-713. |
[4] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[5] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[6] | LIU Xugang, LI Guofeng, LI Lei, WANG Ruixia, FANG Yanming. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763. |
[7] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[8] | WANG Weiheng, GUO Xin, ZHANG Bin, XIA Weiwei. Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 771-778. |
[9] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[10] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[11] | DUAN Hongliang,SHEN Tingshan,SUN Jing,HONG Yafei,LI Sichen,LU Xianrong,ZHANG Zhengyang. Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 333-342. |
[12] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[13] | WANG Xin,HAN Jianqiang,ZAN Ling,LI Xiaolong,PENG Xingping. Logging evaluation of shale oil in the second member of Funing Formation of Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 364-372. |
[14] | ZANG Suhua,JING Xiaoming,LIU Zhihua,YIN Yanling. Geological conditions for shale oil formation in the fourth member of Funing Formation of Eocene series in Jintan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 425-434. |
[15] | GUAN Qianqian,JIANG Long,CHENG Ziyan,ZHANG Diandong,WANG Yunhe,ZHANG Fan. A new method of shale oil facies element logging evaluation and its application in Dongying Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 435-445. |
|