Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (5): 782-792.doi: 10.13809/j.cnki.cn32-1825/te.2021.05.017
• Comprehensive Research • Previous Articles
LEI Yangyang1(),WANG Hui2,WU Xin2,YANG Li3,SHI Le2,WANG Shuai2
Received:
2021-04-16
Online:
2021-10-12
Published:
2021-10-26
CLC Number:
Yangyang LEI,Hui WANG,Xin WU, et al. Analysis of fracture geometry for refractured vertical wells in tight conglomerate reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 782-792.
Table 2
Construction parameters of volume refracturing wells"
井 号 | 井段深度 (m) | 施工用量 | |||||
---|---|---|---|---|---|---|---|
70/140目陶粒(m3) | 20/40目石英砂(m3) | 滑溜水(m3) | 原液(m3) | 交联剂(m3) | 暂堵球(个) | ||
A1 | 2 841.0~2 900.0 | 56.6 | 113.4 | 3 119.5 | 990.5 | 9.9 | 310 |
A2 | 2 815.0~2 910.0 | 56.5 | 113.5 | 3 110.2 | 990.7 | 9.9 | 260 |
A3 | 2 823.0~2 847.0 | 34.4 | 55.6 | 2 175.3 | 640.2 | 6.4 | 200 |
A4 | 2746.1.0~2983.3 | 56.6 | 113.5 | 3 110.5 | 991.5 | 2.6 | 310 |
[1] | SIEBRITS E, ELBEL J L, DETOURNAY E, et al. Parameters affecting azimuth and length of a secondary fracture during a refracture treatment [C]// Paper SPE-48928-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, September 1998. |
[2] | 刘洪, 胡永全, 赵金洲, 等. 重复压裂气井三维诱导应力场数学模型[J]. 石油钻采工艺, 2004, 26(2):57-61. |
LIU Hong, HU Yongquan, ZHAO Jinzhou, et al. Mathematical model of 3D induced stress field in refracturing gas well[J]. Petroleum drilling technology, 2004, 26(2):57-61. | |
[3] | ELBEL J L, MACK M G. Refracturing: Observations and theories[C]// Paper SPE-25464-MS presented at the SPE Production Operations Symposium, Oklahoma City, Oklahoma, March 1993. |
[4] | 杨丽娜, 陈勉. 水力压裂中多裂缝间相互干扰力学分析[J]. 石油大学学报(自然科学版), 2003, 27(3):43-45. |
YANG Lina, CHEN Mian. Mechanism of multi-fracture interaction in multi-layer hydraulic fracturing[J]. Journal of Southwest Petroleum University (Natural Science), 2003, 27(3):43-45. | |
[5] |
ROUSSEL N P, SHARMA M M. Role of stress reorientation in the success of refracture treatments in tight gas sands[J]. SPE Production and Operations, 2012, 27(4):346-355.
doi: 10.2118/134491-PA |
[6] | 苏玉亮, 詹耀华, 鲁明晶, 等. 人工裂缝作用下地应力场变化规律研究[C]// 油气田勘探与开发国际会议,中国陕西西安, 2018:300-310. |
SU Yuliang, ZHAN Yaohua, LU Mingjing, et al. Investigation of production induced stress field under the influence of the artificial initial fracture[C]// International Field Exploration and Development Conference in Xi’an, Shaanxi, Chian, 2018: 300-310. | |
[7] | 邓燕. 重复压裂压新缝力学机理研究[D]. 成都:西南石油学院, 2005. |
DENG Yan. Study on mechanical mechanism of refuracturing fracture[D]. Chengdu: Southwest Petroleum University, 2005. | |
[8] |
JU Y, LIU P, CHEN J L, et al. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites[J]. Journal of Natural Gas Science and Engineering, 2016, 35(35):614-623.
doi: 10.1016/j.jngse.2016.09.011 |
[9] | NAGASO M, MIKADA, H, TAKEKAWA J. The mechanism of complex hydraulic fracture creation due to strength heterogeneity[C]// Paper IPTC-18723-MS presented at the International Petroleum Technology Conference, Bangkok, Thailand, November 2016. |
[10] | 郑继明, 李永环, 王贤君, 等. 大庆油田致密砂岩储层压裂裂缝扩展形态试验研究[J]. 石油地质与工程, 2019, 33(4):107-110. |
ZHENG Jiming, LI Yonghuan, WANG Xianjun, et al. Experimental study on fracture propagation pattern of tight sandstone reservoirs in Daqing oilfield[J]. Petroleum Geology & Engineering, 2019, 33(4):107-110. | |
[11] | 张红静, 徐康泰, 刘立冬, 等. 非稳态渗流下砂砾岩水力裂缝扩展数值模拟[J]. 石油钻采工艺, 2017, 39(6):751-755. |
ZHANG Hongjing, XU Kangtai, LIU Lidong, et al. Numerical simulation on hydraulic fracture propagation in glutenite under the effect of unsteady seepage[J]. Oil Drilling & Production Technology, 2017, 39(6):751-755. | |
[12] | 张子麟, 陈勇, 张全胜, 等. 致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究[J]. 油气地质与采收率, 2019, 26(4):132-138. |
ZHANG Zhilin, CHEN Yong, ZHANG Quansheng, et al. Numerical simulation on propagation mode of hydraulic fracture approaching gravels in tight glutenite[J]. Petroleum Geology And Recovery Efficiency, 2019, 26(4):132-138. | |
[13] | 赵金洲, 赵金, 胡永全, 等. 水力压裂裂缝应力场变化规律[J]. 天然气地球科学, 2019, 30(12):1677-1683. |
ZHAO Jinzhou, ZHAO Jin, HU Yongquan, et al. Study on stress field distribution of hydraulic fracturing[J]. Natural Gas Geosciense, 2019, 30(12):1677-1683. | |
[14] | 俞天喜, 袁峰, 周培尧, 等. 玛南斜坡上乌尔禾组颗粒支撑砾岩裂缝扩展形态[J]. 新疆石油地质, 2021, 42(1):53-62. |
YU Tianxi, YUAN feng, ZHOU Peiyao, et al. Fracture propagating shapes in gravel-supported conglomerate reservoirs of Upper Wuerhe Formation on Manan Slope, Mahu Sag[J]. Xinjiang Petroleum Geology, 2021, 42(1):53-62. | |
[15] | 邹雨时, 石善志, 等. 致密砾岩加砂压裂与裂缝导流能力实验——以准噶尔盆地玛湖致密砾岩为例[J]. 石油勘探与开发, 2021,(6):1-8. |
ZOU Yushi, SHI Shanzhi, et al. Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate: A case study of Mahu tight conglomerate in Junggar Basin, China[J]. Petroleum Exploration and Development, 2021, (6):1-8. | |
[16] | 李宁, 张士诚, 马新仿, 等. 砂砾岩储层水力裂缝扩展规律试验研究[J]. 岩石力学与工程学报, 2017, 36(10):2383-2392. |
LI ning, ZHANG Shicheng, MA Xinfang, et al. Experimental study on the propagation mechanism of hydraulic fracture in glutenite formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10):2383-2392. | |
[17] | 刘向君, 熊健, 梁利喜, 等. 玛湖凹陷百口泉组砂砾岩储集层岩石力学特征与裂缝扩展机理[J]. 新疆石油地质, 2018, 39(1):83-91. |
LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Rock mechanical characteristics and fracture propagation mechanism of sandy conglomerate reservoirs in Baikouquan Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):83-91. | |
[18] | 李连崇, 李根, 孟庆民, 等. 砂砾岩水力压裂裂缝扩展规律的数值模拟分析[J]. 岩土力学, 2013, 34(5):1501-1507. |
LI Lianchong, LI Gen, MENG Qingmin, et al. Numerical simulation of propagation of hydraulic fractures in glutenite formation[J]. Rock and Soil Mechanics, 2013, 34(5):1501-1507. | |
[19] | 孙璐, 刘月田, 王宇, 等. 压敏油藏不规则裂缝形态对压裂水平井产能的影响[J]. 石油科学通报, 2018, 3(1):45-56. |
SUN Lu, LIU Yuetian, WANG Yu, et al. Impact of fractured irregular geometry on productivity of multiple fractured horizontal wells in a pressure-sensitive tight oil reservoir[J]. Petroleum Science Bulletin, 2018, 3(1):45-56. | |
[20] | 郭建春, 刘恒, 曾凡辉. 裂缝变缝宽形态对压裂井长期产能的影响[J]. 中国石油大学学报(自然科学版), 2015, 39(1):111-115. |
GUO Jianchun, LIU Heng, ZENG Fanhui. Influence of varying fracture width on fractured well’s long-term productivity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(1):111-115. | |
[21] | 李士斌, 官兵, 张立刚, 等. 水平井压裂裂缝局部应力场扰动规律[J]. 油气地质与采收率, 2016, 23(6):112-119. |
LI Shibin, GUAN Bing, ZHANG Ligang, et al. Local stress field disturbance law of horizontal well fracturing[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(6):112-119. | |
[22] | 魏臣兴, 练章华, 丁亮亮, 等. 分支井渗流—应力耦合场分析[J]. 岩性油气藏, 2011, 23(4):124-128. |
WEI Chenxing, LIAN Zhanghua, DING Liangliang, et al. Analysis of seepage-stress coupling field for lateral wells[J]. Lithologic Reservoirs, 2011, 23(4):124-128. | |
[23] |
BRUNO M S, NAKAGAWA F M. Pore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28(4):261-273.
doi: 10.1016/0148-9062(91)90593-B |
[1] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[2] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[3] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[4] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[5] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[6] | GAI Changcheng,ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646. |
[7] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[8] | CHEN Xuezhong, ZHAO Huiyan, CHEN Man, XU Huaqing, YANG Jianying, YANG Xiaomin, TANG Huiying. Numerical simulation of multi-layer co-production in marine-continental transitional shale reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 382-390. |
[9] | MA Daixin,REN Xianjun,ZHAO Mifu,HAN Jiaoyan,LIU Yuhu. Theories, technologies and practices of exploration and development of volcanic gas reservoirs: A case study of Cretaceous volcanic rocks in Songnan fault depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 167-175. |
[10] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[11] | CUI Yudong, LU Cheng, GUAN Ziyue, LUO Wanjing, TENG Bailu, MENG Fanpu, PENG Yue. Effects of creep on depressurization-induced gas well productivity in South China Sea natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 809-818. |
[12] | HE Haiyan, LIU Xianshan, GENG Shaoyang, SUN Junchang, SUN Yanchun, JIA Qian. Numerical simulation of UGS facilities rebuilt from oil reservoirs based on the coupling of seepage and temperature fields [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 819-826. |
[13] | LIANG Yunpei, ZHANG Huaijun, WANG Lichun, QIN Chaozhong, TIAN Jian, CHEN Qiang, SHI Bowen. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843. |
[14] | YANG Bing, FU Qiang, GUAN Jingtao, LI Linxiang, PAN Haoyu, SONG Hongbin, QIN Tingting, ZHU Zhiwei. Oil displacement efficiency based on different well pattern adjustment simulation in high water cut reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 519-524. |
[15] | CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. |
|