[1] |
何娟, 蒋帅, 郭成, 等. 基于孔隙尺度的碳酸盐岩油藏微观剩余油变化特征[J]. 中国海上油气, 2024, 36(3): 110-120.
|
|
HE Juan, JIANG Shuai, GUO Cheng, et al. Study on microscopic residual oil variation characteristics in carbonate reservoirs based on the pore-scale research[J]. China Offshore Oil and Gas, 2024, 36(3): 110-120.
|
[2] |
鲍文博, 肖丽华, 刘长龙, 等. 新型荧光核壳微球调驱剂制备及性能表征[J]. 中国海上油气, 2023, 35(6): 98-105.
|
|
BAO Wenbo, XIAO Lihua, LIU Changlong, et al. Preparation and performance characterization of novel fluorescent core-shell microspheres profile control and displacement agent[J]. China Offshore Oil and Gas, 2023, 35(6): 98-105.
|
[3] |
石先亚, 郐婧文, 王冠华, 等. 微气泡增效二元复合驱提高普通稠油采收率实验[J]. 中国海上油气, 2024, 36(1): 84-90.
|
|
SHI Xianya, GUI Jingwen, WANG Guanhua, et al. Laboratory experiment on enhancing conventional heavy oil recovery by microbubble-enhanced S/P binary flooding[J]. China Offshore Oil and Gas, 2024, 36(1): 84-90.
|
[4] |
袁杰, 刘德新, 何娟, 等. 羧基纳米纤维素乳液性能测试及驱油效率研究[J]. 石油机械, 2023, 51(1): 78-85.
|
|
YUAN Jie, LIU Dexin, HE Juan, et al. Experimental study on performance and oil displacement efficiency of CCNF emulsions[J]. China Petroleum Machinery, 2023, 51(1): 78-85.
|
[5] |
楚恒智, 郭勇, 张楠, 等. 微颗粒强化射流空化及破岩能力研究[J]. 石油机械, 2023, 51(8): 34-42.
|
|
CHU Hengzhi, GUO Yong, ZHANG Nan, et al. Role of microparticles in enhancing jet cavitation and rock breaking ability[J]. China Petroleum Machinery, 2023, 51(8): 34-42.
|
[6] |
雷光伦, 郑家朋. 孔喉尺度聚合物微球的合成及全程调剖驱油新技术研究[J]. 中国石油大学学报, 2007, 3(1): 87-90.
|
|
LEI Guanglun, ZHENG Jiapeng. Composing of pore-scale polymer microsphere and its application in improving oil recovery by profile control[J]. Journal of China University of Petroleum(Edition of Natural Science), 2007, 3(1): 87-90.
|
[7] |
白宝君, 刘伟, 李良雄, 等. 影响预交联凝胶颗粒性能特点的内因分析[J]. 石油勘探与开发, 2002, 29(2): 103-105.
|
|
BAI Baojun, LIU Wei, LI Liangxiong, et al. An analysis on intrinsic factors influencing the properties of pre-crosslinking gelled particles[J]. Petroleum Exploration and Development, 2002, 29(2): 103-105.
|
[8] |
赵方剑, 侯健, 元福卿, 等. 支化预交联凝胶颗粒微观驱油机理可视化实验[J]. 断块油气田, 2022, 29(4): 567-571.
|
|
ZHAO Fangjian, HOU Jian, YUAN Fuqing, et al. Visual experimental study on microscopic oil displacement mechanism of branched- preformed particle gel[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 567-571.
|
[9] |
YUE M, ZHU W Y, HAN H Y, et al. Experimental research on remaining oil distribution and recovery performances after nano-micron polymer particles injection by direct visualization[J]. Fuel, 2018, 212: 506-514.
|
[10] |
许成元, 阳洋, 蒲时, 等. 基于高效架桥和致密填充的深层裂缝性储层堵漏配方设计方法研究[J]. 油气藏评价与开发, 2022, 12(3): 534-544.
|
|
XU Chengyuan, YANG Yang, PU Shi, et al. Design method of plugging formula for deep naturally fractured reservoir based on efficient bridging and compact filling[J]. Reservoir Evaluation and Development, 2022, 12(3): 534-544.
|
[11] |
许江文, 张谷畅, 李建民, 等. 暂堵剂形状对裂缝封堵影响规律的实验研究[J]. 断块油气田, 2022, 29(6): 842-847.
|
|
XU Jiangwen, ZHANG Guchang, LI Jianmin, et al. Experimental study on influence law of temporary plugging agent shape on fracture plugging[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 842-847.
|
[12] |
刘刚, 王俊衡, 王丹翎, 等. 耐高温栲胶堵剂的研制及油藏适应性评价[J]. 油气藏评价与开发, 2021, 11(3): 452-458.
|
|
LIU Gang, WANG Junheng, WANG Danling, et al. Development and reservoir adaptability evaluation of a high temperature resistant plugging agent: tannin extract[J]. Reservoir Evaluation and Development, 2021, 11(3): 452-458.
|
[13] |
于继良, 鲍志东, 李海龙, 等. 高温裂缝性油藏凝胶封堵剂的性能评价[J]. 石油与天然气化工, 2024, 53(2): 107-111.
|
|
YU Jiliang, BAO Zhidong, LI Hailong, et al. Performance evaluation of gel plugging agent for high-temperature fractured reservoirs[J]. Chemical Engineering of Oil & Gas, 2024, 53(2):107-111.
|
[14] |
WANG J, LIU H Q, WANG Z L, et al. Experimental investigation on the filtering flow law of pre-gelled particle in porous media[J]. Transport in Porous Media, 2012, 94: 69-86.
|
[15] |
FENG Q H, CHEN X C, ZHANG G. Experimental and numerical study of gel particles movement and deposition in porous media after polymer flooding[J]. Transport in Porous Media, 2013, 97: 67-85.
|
[16] |
CHEN X C, FENG Q H, LIU W, et al. Modeling preformed particle gel surfactant combined flooding for enhanced oil recovery after polymer flooding[J]. Fuel, 2017, 194: 42-49.
|
[17] |
LIU X Q, QU Z Q, YE W B, et al. A new type of double dispersion system for water control in fossil hydrogen energy development[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29500-29507.
|
[18] |
LUO M L, JIA X H, SI X D, et al. A novel polymer encapsulated silica nanoparticles for water control in development of fossil hydrogen energy-tight carbonate oil reservoir by acid fracturing[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31191-31201.
|
[19] |
SUN Z, WU X C, KANG X D, et al. Comparison of oil displacement mechanisms and performances between continuous and dispersed phase flooding agents[J]. Petroleum Exploration and Development, 2019, 46(1): 121-129.
|
[20] |
朱霞, 姚峰, 钱志鸿. 聚合物微球溶液封堵性能影响因素研究[J]. 胶体与聚合物, 2014, 32(1): 38-40.
|
|
ZHU Xia, YAO Feng, QIAN Zhihong. The influence factors on plugging characteristics of the polymer microsphere[J]. Chinese Journal of Colloid & Polymer, 2014, 32(1): 38-40.
|
[21] |
周元龙, 姜汉桥, 王川, 等. 核磁共振研究聚合物微球调驱微观渗流机理[J]. 西安石油大学学报(自然科学版), 2013, 28(1): 70-75.
|
|
ZHOU Yuanlong, JIANG Hanqiao, WANG Chuan, et al. Experimental study on microscopic percolation mechanism of polymer microsphere profile control and flooding by nuclear magnetic resonanc[J]. Journal of Xi'an Shiyou University(Natural Science), 2013, 28(1): 70-75.
|
[22] |
FAIVRE M, ABKARIAN M, BICKRAJ K, et al. Geometrical focusing of cells in a microfluidic device: An approach to blood plasma[J]. Biorheology, 2006, 43(2): 147-159.
|
[23] |
MCWHIRTER S M, BARBALAT R, MONROE K M, et al. A host typeⅠ interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP[J]. The Journal of experimental medicine, 2009, 206(9): 1899-1911.
|
[24] |
FENTON B M, CARR R T, COKELET G R. Nonuniform red cell distribution in 20 to 100 micrometers bifurcations[J]. Microvascular Research, 1985, 29(1): 103-126.
|
[25] |
娄钰. 纳微米聚合物颗粒分散体系非匀相渗流理论研究[D]. 北京: 北京科技大学, 2015.
|
|
LOU Yu. Heterogeneous flow of nano/micron polymer-particle dispersion system in porous media[D]. Beijing: University of Science & Technology Beijing, 2015.
|
[26] |
KRIEGER I M, DOUGHERTY T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transactions of The Society of Rheology, 1929, 3: 137-152.
|
[27] |
YU B M, CHENG P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993.
|
[28] |
XU P, YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74-81.
|
[29] |
WU Z W, CUI C Z, HAO Y M, et al. Relative permeability model taking the roughness and actual fluid distributions into consideration for water flooding reservoirs[J]. Arabian Journal for Science and Engineering, 2019, 44: 10513-10523.
|
[30] |
WU Z W, CUI C Z, YANG Y, et al. A fractal permeability model of tight oil reservoirs considering the effects of multiple factors[J]. Fractal and Fractional, 2022, 6(3): 153.
|
[31] |
赵玉武. 低渗透油藏纳微米聚合物驱油实验和渗流机理研究[D]. 北京: 中国科学院研究生院(渗流流体力学研究所), 2010.
|
|
ZHAO Yuwu. A study on laboratory experiment and numerical simulation of nano-micron polymer flooding for Low-permeable reservoir[D]. Beijing: Chinese Academy of Science(Institute of Porous Flow and Fluid Mechanics), 2010.
|