[1] |
邓瑞健. 核磁共振技术在水驱油实验中的应用[J]. 断块油气田, 2002, 9(4): 33-37.
|
|
DENG Reijian. Application of nuclear magnetic resonance imaging technology in water driving oil experiment[J]. Fault-Block Oil & Gas Field, 2002, 9(4): 33-37.
|
[2] |
刘红现, 许长福, 胡志明. 用核磁共振技术研究剩余油微观分布[J]. 特种油气藏, 2011, 18(1): 96-97.
|
|
LIU Hongxian, XU Changfu, HU Zhiming. Research on microcosmic remaining oil distribution by NMR[J]. Special Oil & Gas Reservoirs, 2011, 18(1): 96-97.
|
[3] |
李振涛. 利用核磁共振二维谱技术研究岩心含油饱和度[D]. 北京: 中国科学院大学, 2011.
|
|
LI Zhentao. Using two dimensional NMR technology to research core oil saturation[D]. Beijing: University of Chinese Academy of Sciences, 2011.
|
[4] |
王学武, 杨正明, 李海波, 等. 利用核磁共振研究特低渗透油藏微观剩余油分布[J]. 应用基础与工程科学学报, 2013, 21(4): 702-709.
|
|
WANG Xuewu, YANG Zhengming, LI Haibo, et al. Microscopic distribution of remaining oil of ultra-low permeability reservoir by using NMR technique[J]. Journal of Basic Science and Engineering, 2013, 21(4): 702-709.
|
[5] |
刘凡, 姜汉桥, 张贤松, 等. 基于核磁共振的水平井开发孔隙动用机理研究[J]. 西南石油大学学报(自然科学版), 2013, 35(6): 99-103.
|
|
LIU Fan, JIANG Hanqiao, ZHANG Xiansong, et al. Study on the mechanism of horizontal well development based on NMR[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(6): 99-103.
|
[6] |
张振涛, 姜汉桥. 核磁共振方法研究油水过渡带驱替特征[J]. 石油地质与工程, 2019, 33(4): 54-57.
|
|
ZHANG Zhentao, JIANG Hanqiao. Displacement characteristics of oil-water transition zones through nuclear magnetic resonance[J]. Petroleum Geology and Engineering, 2019, 33(4): 54-57.
|
[7] |
徐思越. 低渗透油藏微观剩余油分布研究[D]. 青岛: 中国石油大学(华东), 2020.
|
|
XU Siyue. Study on microscopic remaining oil distribution in low permeability reservoirs[D]. Qingdao: China University of Petroleum(East China), 2020.
|
[8] |
白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩所含流体特征的应用——以松辽盆地青山口组富有机质页岩为例[J]. 石油与天然气地质, 2021, 42(6): 1389-1400.
|
|
BAI Longhui, LIU Bo, CHI Ya’ao, et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation,Songliao Basin[J]. Oil & Gas Geology, 2021, 42(6): 1389-1400.
|
[9] |
陈瑶, 张宫, 郑国庆, 等. T2—Pc二维核磁共振岩心测试技术与应用[J]. 石油实验地质, 2021, 43(3): 549-556.
|
|
CHEN Yao, ZHANG Gong, ZHENG Guoqing, et al. Core testing technology with T2-Pc two-dimensional nuclear magnetic resonance and its application[J]. Petroleum Experimental & Geology, 2021, 43(3): 549-556.
|
[10] |
景岷雪, 罗丽琼. 储层中微粒运移现象的实验判断[J]. 天然气勘探与开发, 2005, 28(2): 50-53.
|
|
JING Minxue, LUO Liqiong. Experimental judgement of reservoir particle migration phenomenon[J]. Natural Gas Exploration and Development, 2005, 28(2): 50-53.
|
[11] |
李龙, 鞠斌山, 江怀友, 等. 油层微粒运移及其对储层物性的影响[J]. 中外能源, 2011, 16(12): 50-54.
|
|
LI Long, JU Binshan, JIANG Huaiyou, et al. Fine grain migration and its effects on the physical properties of oil formations[J]. Sino-Global Energy, 2011, 16(12): 50-54.
|
[12] |
曹宝格, 韩永林, 余永进, 等. 马岭油田南二区延9油藏注水开发储集层特征变化研究[J]. 新疆地质, 2019, 37(3): 373-377.
|
|
CAO Baoge, HAN Yonglin, YU Yongjin, et al. Study on reservoir characteristics change in waterflooding development in Yan 9 reservoir of Nan2 district of Maling Oilfield[J]. Xinjiang Geology, 2019, 37(3): 373-377.
|
[13] |
黎晓茸, 杨立华, 李大建, 等. 西峰油田注水引起的微粒运移实验研究[J]. 断块油气田, 2008, 15(2): 81-82.
|
|
LI Xiaorong, YANG Lihua, LI Dajian, et al. Experiment research on particulate movement caused by water injection in Xifeng Oilfield[J]. Fault-Block Oil & Gas Field, 2008, 15(2): 81-82.
|
[14] |
李力, 孙杰, 陈伟华, 等. 四川盆地二叠系玄武岩储层微粒运移损害机理研究[J]. 河南科学, 2021, 39(3): 403-411.
|
|
LI Li, SUN Jie, CHEN Weihua, et al. Study on the mechanism of particle migration damage in permian basalt reservoirs in Sichuan Basin[J]. Henan Science, 2021, 39(3): 403-411.
|
[15] |
崔传智, 韦自健, 刘力军, 等. 低矿化度水驱中的微粒运移机理及其开发效果[J]. 工程科学学报, 2019, 41(6): 719-730.
|
|
CUI Chuanzhi, WEI Zijian, LIU Lijun, et al. Mechanism of fines migration in low-salinity waterflooding and its development effect[J]. Chinese Journal of Engineering, 2019, 41(6): 719-730.
|
[16] |
何雨丹, 毛志强, 肖立志, 等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报, 2005, 48(2): 737-742.
|
|
HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chinese Journal of Geophysics, 2005, 48(2): 737-742.
|
[17] |
王翼君, 李雪梅, 沈建军, 等. 油气储层孔隙结构核磁共振分析局限性探讨[J]. 油气藏评价与开发, 2016, 6(4): 44-52.
|
|
WANG Yijun, LI Xuemei, SHEN Jianjun, et al. Discuss on the limitation of nuclear magnetic resonance method for the analysis of reservoir porosity structure[J]. Petroleum Reservoir Evaluation and Development, 2016, 6(4): 44-52.
|
[18] |
任晓娟. 低渗砂岩储层孔隙结构与流体微观渗流特征研究[D]. 西安: 西北大学, 2006.
|
|
REN Xiaojuan. Pore structure of low permeability sand rock and fluid flowing characteristics[D]. Xi'an: Northwest University, 2006.
|
[19] |
MITCHELL J, GLADDEN L F, CHANDRASEKERA T C, et al. Low-field permanent magnets for industrial process and quality control[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 76.
|
[20] |
范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4)1628-1638.
|
|
FAN Yiren, LIU Jianyu, GE Xinmin, et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR[J]. Chinese Journal of geophysics, 2018, 61(4): 1628-1638.
|
[21] |
王赞惟. 鄂尔多斯盆地东缘临兴地区盒 8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1): 59-64.
|
|
WANG Zanwei. Microscopic pore structure and the seepage characteristics in tight sandstone reservoir of the 8th member of lower Shihezi Formation in Linxing area of East Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64.
|
[22] |
李楚雄, 申宝剑, 卢龙飞, 等. 松辽盆地沙河子组页岩孔隙结构表征: 基于低场核磁共振技术[J]. 油气藏评价与开发, 2022, 12(3): 468-476.
|
|
LI Chuxiong, SHEN Baojian, LU Longfei, et al. Pore structure characterization of Shahezi Formation shale in Songliao Basin: Based on low-field nuclear magnetic resonance technology[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 468-476.
|