Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (2): 227-236.doi: 10.13809/j.cnki.cn32-1825/te.2025.02.007
• Oil and Gas Exploration • Previous Articles Next Articles
WANG Pengxiang1(), ZHANG Zhou1,2,3(
), YU Wanying1, ZOU Qiang1, YANG Zhengtao1
Received:
2024-10-21
Online:
2025-04-01
Published:
2025-04-26
Contact:
ZHANG Zhou
E-mail:1227181367@qq.com;zhangzhou@hpu.edu.cn
CLC Number:
WANG Pengxiang,ZHANG Zhou,YU Wanying, et al. Characteristics of pore-fracture structure and three-dimensional spatial distribution differences in deep and shallow coal reservoirs: A case study of Junggar Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 227-236.
Table 1
Basic physical and chemical properties of coal rocks in deep and shallow coal strata of Junggar Basin"
样品 编号 | 采样 位置 | 去矿物基显微组分体积分数/% | 工业分析组分质量分数/% | 常量元素质量分数/% | 渗透率/ 10-3 μm2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
镜质组 | 惰质组 | 壳质组 | Mad | Aad | Vdaf | FCad | ω(N) | ω(C) | ω(H) | ω(S) | ω(O) | |||
QG | 深部 | 45.56 | 53.67 | 0.77 | 3.87 | 2.59 | 25.68 | 67.86 | 0.52 | 78.33 | 4.16 | 0.07 | 12.43 | 0.022 |
DN | 75.33 | 23.68 | 0.99 | 2.87 | 2.92 | 41.24 | 52.97 | 0.75 | 75.83 | 5.56 | 0.13 | 12.12 | 0.013 | |
KG | 浅部 | 12.55 | 86.61 | 0.84 | 5.74 | 1.27 | 21.30 | 71.69 | 1.37 | 78.19 | 3.78 | 0.05 | 10.21 | 0.097 |
LHG | 21.20 | 78.00 | 0.80 | 9.85 | 1.98 | 23.76 | 64.41 | 0.04 | 71.25 | 3.46 | 0.03 | 13.95 | 0.149 |
Table 2
Fractal dimensions calculated based on liquid nitrogen and FHH model"
样品编号 | 采样位置 | 相对压力(p/p0)小于0.5 | 相对压力(p/p0)大于0.5 | ||||
---|---|---|---|---|---|---|---|
拟合函数 | D1 | R2 | 拟合函数 | D2 | R2 | ||
QG | 深部 | y=-0.763 6x-3.346 4 | 2.236 4 | 0.950 9 | y=-0.338 2x-3.318 5 | 2.661 8 | 0.993 0 |
DN | y=-0.452 4x-0.216 0 | 2.547 6 | 0.978 1 | y=-0.277 7x-0.103 4 | 2.722 3 | 0.978 1 | |
KG | 浅部 | y=-0.366 6x+1.078 7 | 2.633 4 | 0.965 7 | y=-0.144 0x+1.095 7 | 2.855 9 | 0.997 8 |
LHG | y=-0.356 8x+1.327 0 | 2.643 2 | 0.921 5 | y=-0.136 3x+1.292 9 | 2.863 7 | 0.993 1 |
Table 3
Fractal dimensions of mesopores and macropores calculated based on mercury intrusion porosimetry and Sierpinski model"
样品编号 | 采样位置 | 大孔 | 中孔 | ||||
---|---|---|---|---|---|---|---|
拟合函数 | D3 | R2 | 拟合函数 | D4 | R2 | ||
QG | 深部 | y=0.070 8x-3.852 2 | 2.929 2 | 0.959 7 | y=0.033 9x-3.864 7 | 2.966 1 | 0.991 0 |
DN | y=0.098 7x-3.786 0 | 2.901 3 | 0.954 9 | y=0.140 9x-3.795 6 | 2.859 1 | 0.992 0 | |
KG | 浅部 | y=0.218 0x-4.667 2 | 2.782 0 | 0.990 2 | y=0.512 8x-4.732 8 | 2.487 2 | 0.995 5 |
LHG | y=0.407 2x-3.936 0 | 2.592 8 | 0.985 7 | y=0.559 3x-4.013 1 | 2.440 7 | 0.996 5 |
Table 4
Basic parameters of pore network models reconstructed from CT scans"
样品编号 | 孔径 | 等效孔隙数量 | 平均孔隙等效直径/μm | 累计孔隙等效直径/μm | 孔喉长度/μm | 孔喉数量 | 平均孔喉 长度/μm | 累计孔喉 长度/μm | 有效配位数 |
---|---|---|---|---|---|---|---|---|---|
DN | <5 | 226 | 1.91 | 432 | <50 | 0 | 0 | 0 | 80 |
5~<10 | 62 | 6.46 | 401 | 50~<100 | 5 | 78.8 | 394 | ||
10~<20 | 23 | 13.26 | 305 | 100~<200 | 45 | 157.6 | 7 094 | ||
20~<30 | 15 | 25.20 | 378 | 200~<300 | 35 | 256.8 | 8 989 | ||
30~50 | 33 | 39.51 | 1 304 | 300~500 | 40 | 381.6 | 15 265 | ||
>50 | 36 | 69.30 | 2 498 | >500 | 5 | 587.4 | 2 937 | ||
QG | <5 | 127 | 2.39 | 304 | <50 | 10 | 36.6 | 366 | 227 |
5~<10 | 44 | 7.04 | 310 | 50~<100 | 50 | 78.2 | 3 908 | ||
10~<20 | 101 | 14.70 | 1 485 | 100~<200 | 97 | 145.2 | 14 087 | ||
20~<30 | 58 | 24.70 | 1 437 | 200~<300 | 98 | 246.3 | 24 139 | ||
30~50 | 43 | 36.48 | 1 569 | 300~500 | 91 | 378.3 | 34 430 | ||
>50 | 28 | 83.03 | 2 325 | >500 | 27 | 589.3 | 15 912 | ||
KG | <5 | 0 | 0 | 0 | <50 | 229 | 35.9 | 8 242 | 972 |
5~<10 | 136 | 7.61 | 1 036 | 50~<100 | 157 | 78.6 | 12 347 | ||
10~<20 | 302 | 17.63 | 5 327 | 100~<200 | 84 | 139.2 | 11 694 | ||
20~<30 | 81 | 23.03 | 1 866 | 200~<300 | 27 | 274.7 | 7 418 | ||
30~50 | 15 | 34.80 | 522 | 300~500 | 19 | 332.0 | 6 314 | ||
>50 | 5 | 57.80 | 289 | >500 | 7 | 539.5 | 3 777 | ||
LHG | <5 | 0 | 0 | 0 | <50 | 200 | 35.1 | 7 019 | 878 |
5~<10 | 255 | 8.30 | 2 119 | 50~<100 | 140 | 69.5 | 9 731 | ||
10~<20 | 517 | 13.62 | 7 046 | 100~<200 | 84 | 143.2 | 12 028 | ||
20~<30 | 79 | 23.36 | 1 846 | 200~<300 | 41 | 248.1 | 10 174 | ||
30~50 | 21 | 37.00 | 777 | 300~500 | 42 | 383.7 | 16 118 | ||
>50 | 10 | 79.20 | 792 | >500 | 46 | 669.0 | 30 774 |
[1] | 蒋曙鸿, 师素珍, 赵康, 等. 深部煤及煤层气勘探前景及发展方向[J]. 科技导报, 2023, 41(7): 106-113. |
JIANG Shuhong, SHI Suzhen, ZHAO Kang, et al. Prospect and development direction of deep coal and coalbed methane exploration[J]. Science & Technology Review, 2023, 41(7): 106-113. | |
[2] | 贾承造, 王祖纲, 姜林, 等. 中国油气勘探开发成就与未来潜力: 深层、深水与非常规油气——专访中国科学院院士、石油地质与构造地质学家贾承造[J]. 世界石油工业, 2023, 30(3): 1-8. |
JIA Chengzhao, WANG Zugang, JIANG Lin, et al. Achievements and future potential for oil&gas exploration and development in China: deep-formation, deep-water and unconventional reservoirs—Interview with JIA Chengzao, Academician of the CAS, geologist in petroleum geology and structure[J]. World Petroleum Industry, 2023, 30(3): 1-8. | |
[3] | 张华珍, 徐海云, 张焕芝, 等. 2022国外油气田开发技术进展[J].世界石油工业, 2023, 30(3): 53-60. |
ZHANG Huazhen, XU Haiyun, ZHANG Huanzhi, et al. Progress of oil and gas field development technologies in 2022[J]. World Petroleum Industry, 2023, 30(3): 53-60. | |
[4] | 汪泽成, 赵振宇, 黄福喜, 等. 中国中西部含油气盆地超深层油气成藏条件与勘探潜力分析[J]. 世界石油工业, 2024, 31(1): 33-48. |
WANG Zecheng, ZHAO Zhenyu, HUANG Fuxi, et al. Ultra-deep hydrocarbon accumulation conditions and exploration potential in sedimentary basins of Central-Western China[J]. World Petroleum Industry, 2024, 31(1): 33-48. | |
[5] | 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811. |
QIN Yong. Progress on geological research of deep coalbed methane in china[J]. Acta Petrolei Sinica, 2023, 44(11): 1791-1811. | |
[6] | 邓泽, 王红岩, 姜振学, 等. 深部煤储层孔裂隙结构对煤层气赋存的影响: 以鄂尔多斯盆地东缘大宁-吉县区块为例[J]. 煤炭科学技术, 2024, 52(8): 106-123. |
DENG Ze, WANG Hongyan, JIANG Zhenxue, et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane: A case study of Daning-Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology, 2024, 52(8): 106-123. | |
[7] | 章新文, 王勇, 金芸芸, 等. 鄂尔多斯盆地南部旬-宜探区深部煤层气成藏条件与勘探潜力[J]. 石油地质与工程, 2024, 38(2): 77-81. |
ZHANG Xinwen, WANG Yong, JIN Yunyun, et al. Reservoir-forming conditions and exploration potential of deep coalbed methane in Xun-Yi exploration area, southern Ordos Basin[J]. Petroleum Geology & Engineering, 2024, 38(2): 77-81. | |
[8] | 许晓凡, 杨铁梅, 邓志宇, 等. 深煤层可改造性测井评价方法研究[J]. 石油地质与工程, 2024, 38(5): 30-35. |
XU Xiaofan, YANG Tiemei, DENG Zhiyu, et al. Logging evaluation of the transformability potential for deep coalbed methane reservoir[J]. Petroleum Geology & Engineering, 2024, 38(5): 30-35. | |
[9] | 降文萍, 张群, 姜在炳, 等. 构造煤孔隙结构对煤层气产气特征的影响[J]. 天然气地球科学, 2016, 27(1): 173-179. |
BENG Wenping, ZHANG Qun, JIANG Zaibing, et al. Effect on CBM drainage characteristics of pore structure of tectonic coal[J]. Natural Gas Geoscience, 2016, 27(1): 173-179. | |
[10] | 李相臣, 康毅力. 煤层气储层微观结构特征及研究方法进展[J]. 中国煤层气, 2010, 7(2): 13-17. |
LI Xiangchen, KANG Yili. Advances in the micro-structural features and research methodology of coalbed methane reservoir[J]. China Coalbed Methane 2010, 7(2): 13-17. | |
[11] | 刘大锰, 贾奇锋, 蔡益栋. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术, 2022, 50(1): 196-203. |
LIU Dameng, JIA Qifeng, CAI Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology, 2022, 50(1): 196-203. | |
[12] | JIANG B, QU Z H, WANG G, et al. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China[J]. International Journal of Coal Geology, 2010, 82(3-4): 175-183. |
[13] | SCHMITT M, FERNANDES C P, CUNHA NETO J A B DA, et al. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques[J]. Marine and Petroleum Geology, 2013, 39(1): 138-149. |
[14] | 王睿, 冯宏飞, 柳长峰. 压汞法和液氮吸附法在高阶煤孔隙结构表征中的适用性[J]. 石油钻采工艺, 2024, 46(1): 112-118. |
WANG Rui, FENG Hongfei, LIU Changfeng. Applicability of mercury intrusion method and nitrogen adsorption method in characterizing pore structure of high-rank coal[J]. Oil Drilling & Production Technology, 2024, 46(1): 112-118. | |
[15] | 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40-44. |
ZHANG Hui. Genetical types of pores in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001, 26(1): 40-44. | |
[16] | 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学: 地球科学, 2010, 40(11): 1598-1607. |
YAO Yanbin, LIU Dameng, CAI Yidong, et al. Fine quantitative characterization of pore fracture in coal based on NMR and X-CT[J]. Scientia Sinica(Terrae), 2010, 40(11): 1598-1607. | |
[17] | 王尧, 王传格, 曾凡桂, 等. 中低阶煤纳米孔隙结构的小角X射线散射研究[J]. 煤炭转化, 2022, 45(4): 10-18. |
WANG Yao, WANG Chuange, ZENG Fangui, et al. Small-Angle X-ray scattering study on the Nano-pore structure of middle and low rank coal[J]. Coal Conversion, 2022, 45(4): 10-18. | |
[18] | 苟启洋, 徐尚, 郝芳, 等. 基于微米CT页岩微裂缝表征方法研究[J]. 地质学报, 2019, 93(9): 2372-2382. |
GOU Qiyang, XU Shang, HAO Fang, et al. Study on characterization of micro-fracture of shale based on micro-CT[J]. Acta Geologica Sinica, 2019, 93(9): 2372-2382. | |
[19] | 彭紫燕, 谢斐, 王炜肖, 等. 页岩储层压裂裂缝形态描述及流动模拟方法研究现状[J]. 石油地质与工程, 2023, 37(5): 120-126. |
PENG Ziyan, XIE Fei, WANG Yixiao,et al. Research status of fracture morphology description and flow simulation method in shale reservoirs[J]. Petroleum Geology & Engineering, 2023, 37(5): 120-126. | |
[20] | 张苗, 刘钦节, 王兴阵, 等. 整合压汞、N2和CO2吸附的中-高阶煤多重分形特征[J]. 煤炭学报, 2024, 49(5): 2394-2404. |
ZHANG Miao, LIU Qinjie, WANG Xingzhen, et al. Multiple fractal characterization of medium-high-rank coal integrating mercury intrusion porosimetry, N2 and CO2 adsorption experiments[J]. Journal of China Coal Society, 2024, 49(5): 2394-2404. | |
[21] | 刘世奇, 王鹤, 王冉, 等. 煤层孔隙与裂隙特征研究进展[J]. 沉积学报, 2021, 39(1): 212-230. |
LIU Shiqi, WANG He, WANG Ran, et al. Research advances on characteristics of pores and fractures in Coal Seams[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230. | |
[22] | 汪周华, 范琨鹏, 赵建飞, 等. 非常规储层微纳米孔隙介质中流体相态研究进展[J]. 世界石油工业, 2024, 31(3): 68-77. |
WANG Zhouhua, FAN Kunpeng, ZHAO Jianfei, et al. Research progress of fluid phase behavior in micro-nano porous media of unconventional reservoirs[J]. World Petroleum Industry, 2024, 31(3): 68-77. | |
[23] | 汤达祯, 杨曙光, 唐淑玲, 等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报, 2021, 46(8): 2412-2425. |
TANG Dazhen, YANG Shuguang, TANG Shuling, et al. Advance on exploration-development and geological research of coalbed methane in the Junggar Basin[J]. Journal of China Coal Society, 2021, 46(8): 2412-2425. | |
[24] | 桑树勋, 李瑞明, 刘世奇, 等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报, 2024, 49(1): 563-585. |
Shuxun SAN, LI Ruiming, LIU Shiqi, et al. Research progress and breakthrough direction of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society, 2024, 49(1): 563-585. | |
[25] | 兰浩, 杨兆彪, 仇鹏, 等. 新疆准噶尔盆地白家海凸起深部煤层气勘探开发进展及启示[J]. 煤田地质与勘探, 2024, 52(2): 13-22. |
LAN Hao, YANG Zhaobiao, CHOU Peng, et al. Exploration and exploitation of deep coalbed methane in the Baijiahai uplift, Junggar Basin: Progress and its implications[J]. Coal Geology & Exploration, 2024, 52(2): 13-22. | |
[26] | 程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. |
CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology & Experiment, 2023, 45(2): 229-237. | |
[27] | 彭文利, 薛冽, 马效杰, 等. 准噶尔盆地南缘齐古地区煤层气地质特征[J]. 非常规油气, 2021, 8(1): 8-14. |
PENG Wenli, XUE Lie, MA Xiaojie, et al. Geological characteristics of coalbed methane in Qigu area on the southern margin of Junggar Basin[J]. Unconventional Oil & Gas, 2021, 8(1): 8-14. | |
[28] | 彭文利, 薛冽, 胡斌, 等. 准噶尔盆地东部煤层气地质特征及有利区优选[J]. 非常规油气, 2015, 2(5): 7-12. |
PENG Wenli, XUE Lie, HU Bin, et al. CBM geological characteristics and favorable zone optimization in eastern Junggar Basin[J]. Unconventional Oil & Gas, 2015, 2(5): 7-12. | |
[29] | 宋永, 唐勇, 何文军, 等. 准噶尔盆地油气勘探新领域、新类型及勘探潜力[J]. 石油学报, 2024, 45(1): 52-68. |
SONG Yong, TANG Yong, HE Wenjun, et al. New fields, new types and exploration potentials of oil-gas exploration in Junggar Basin[J]. Acta Petrolei Sinica, 2024, 45(1): 52-68. | |
[30] | 张哲泠, 杨正红. 微介孔材料物理吸附准确性分析的理论与实践[J]. 催化学报, 2013, 34(10): 1797-1810. |
ZHANG Zheling, YANG Zhenghong. Theoretical and practice discussion of measurement accuracy for physisorption with micro-and mesoporous materials[J]. Chinese Journal of Catalysis, 2013, 34(10): 1797-1810. | |
[31] | 张昆, 孟召平, 金毅, 等. 不同煤体结构煤的孔隙结构分形特征及其研究意义[J]. 煤炭科学技术, 2023, 51(10): 198-206. |
ZHANG Kun, MENG Zhaoping, JIN Yi, et al. Fractal characteristics of pore structures on different coal structures and its research significance[J]. Coal Science and Technology, 2023, 51(10): 198-206. | |
[32] | SONG Y, JIANG B, LIU J G. Nanopore structural characteristics and their impact on methane adsorption and diffusion in low to medium tectonically deformed coals: Case study in the Huaibei coal field[J]. Energy & Fuels, 2017, 31(7): 6711-6723. |
[33] | ZHANG Z, LIU G F, WANG X M, et al. A fractal Langmuir adsorption equation on coal: Principle, methodology and implication[J]. Chemical Engineering Journal, 2024, 488: 150869. |
[34] | LIU D M, ZHAO Z, CAI Y D, et al. Review on applications of X-ray computed tomography for coal characterization: Recent progress and perspectives[J]. Energy & Fuels, 2022, 36(13): 6659-6674. |
[35] | 张开仲, 程远平, 王亮, 等. 基于煤中瓦斯赋存和运移方式的孔隙网络结构特征表征[J]. 煤炭学报, 2022, 47(10): 3680-3694. |
ZHANG Kaizhong, CHENG Yuanping, WANG Liang, et al. Pore network structure characterization based on gas occurrence and migration in coal[J]. Journal of China Coal Society, 2022, 47(10): 3680-3694. | |
[36] | ZHANG K Z, WANG S L, WANG L, et al. 3D visualization of tectonic coal microstructure and quantitative characterization on topological connectivity of pore-fracture networks by Micro-CT[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109675 |
[1] | ZHAO Haifeng, WANG Chengwang, XI Yue, WANG Chaowei. Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 310-323. |
[2] | LIN Weiqiang, CONG Peng, WANG Hong, WEI Zichen, YANG Yuntian, YAO Zhiqiang, QU Lili, MA Limin, WANG Fanglu. Application and discussion of geological guidance technology for deep coalbed methane horizontal wells: A case study of block X in Shenmu gas field, Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 300-309. |
[3] | ZHAO Chongsheng, WANG Bo, GOU Bo, LUO Pengfei, CHEN Guojun, WU Guoquan. Equipment configuration and process technology of hybrid oil-electric fracturing for deep coalbed methane [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 292-299. |
[4] | YANG Xue, TIAN Chong, YANG Yuran, ZHANG Jingyuan, WANG Qing, WU Wei, LUO Chao. Accumulation characteristics and exploration potential of deep coalbed methane in Changning area of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 194-204. |
[5] | HUANG Li, XIONG Xianyue, WANG Feng, SUN Xiongwei, ZHANG Yixin, ZHAO Longmei, SHI Shi, ZHANG Wen, ZHAO Haoyang, JI Liang, DENG Lin. A new method for determining factors Influencing productivity of deep coalbed methane vertical cluster wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 990-996. |
[6] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[7] | CHEN Xiangyu,LI Jianyuan,CHEN Yu. Heat transfer of steam cavity edge in SAGD process considering reservoir physical property changes [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 379-384. |
[8] | YAO Hongsheng,XIAO Cui,CHEN Zhenlong,GUO Tao,LI Xin. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 545-555. |
[9] | WANG Ran,HE Wenjun,ZHAO Xinmei,LIU Guoliang,ZHOU Zuoming,ZHAO Yi. Geological section analysis of shale oil in Lucaogou Formation of Well-Ji-174, Junggar Basin [J]. Reservoir Evaluation and Development, 2022, 12(1): 192-203. |
[10] | LI Xin. Structural control on productivity of deep coalbed methane wells [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 643-651. |
[11] | YAO Hongsheng,CHEN Zhenlong,GUO Tao,LI Xin,XIAO Cui,XIE Fei. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 291-296. |
[12] | YANG Zhaozhong,LI Yang,RAO Zheng,HE Fan,LI Xiaogang,MA Xueli. Impact of injected water quality on oil recovery ratio of reservoir in Wellblock-SN-1 [J]. Reservoir Evaluation and Development, 2020, 10(6): 103-109. |
[13] | CHEN Bo,ZHANG Shuncun,SUN Guoqiang,SHI Ji’an,WU Tao. Characteristics and formation mechanism of Carbonate cementation in Che-Guai slope area, Junggar Basin [J]. Reservoir Evaluation and Development, 2020, 10(4): 101-106. |
|