Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (4): 632-640.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.012
• Methodological Theory • Previous Articles Next Articles
WANG Zhanpeng1,2(), LIU Shuangxing1, LIU Qi1(
), YANG Shugang1, ZHANG Min2, XIAN Chenggang2, WENG Yibin1
Received:
2024-06-25
Online:
2025-07-19
Published:
2025-08-26
CLC Number:
WANG Zhanpeng,LIU Shuangxing,LIU Qi, et al. Research progress on effects of CO2 injection on formations during geological storage[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 632-640.
Table1
Comparison of different injection techniques"
注入方式 | 操作模式 | 影响因素 | 优点 | 缺点 | 应用 | 发展趋势 |
---|---|---|---|---|---|---|
连续注入 | 持续不间断注入 | 注入量、注入速率 | 操作简单、稳定性好、驱油效率高 | 地层压力增长快、需严格控制注入参数 | 封存容量大、良好封闭性油藏 | 更为精细的注入参数控制 |
间歇注入 | 分批注入 | 注入周期、停止时间 | 缓解地层压力、减少破裂风险、提高原油流动性 | 操作复杂、精准控制难度大、驱油效率可能略低 | 地质条件复杂、存在潜在破裂风险油藏 | 注重优化注入周期和停止时间 |
压力管理注入 | 监测、动态调整注入 | 地层压力监测准确性、压力调节措施 | 降低泄漏风险、提高封存效率 | 操作成本高、需高精度实时监测设备 | 地层压力变化敏感、存在较高安全风险油藏 | 实时监测储层压力和流体动态 |
多点注入 | 多个注入点,同时或分阶段注入 | 注入点布局、各注入点注入参数 | 减少压力梯度、便于均匀分布 | 增加设备和操作成本、参数优化复杂 | 封存容量大、强非均质性油藏 | 优化注入井的位置和数量 |
定向注入 | 定向注入至特定区域或层位 | 定向钻井精度、目标区域油藏特性 | 提高封存效率、减少CO2无效扩散和泄漏风险 | 定向钻井技术成本较高、设备要求高 | 具有特定裂隙地层、需要精确控制注入位置的油藏 | 提高技术的适应性和可靠性 |
CO2吞吐 | 周期性注入采出 | 吞吐周期、焖井时间、地层特性 | 经济环保、工艺简单、增油效果明显、适用性广 | 效果不确定性强、潜在风险大 | 井间连通性差、小断块、低渗透、低压力、开采难度大的油藏 | 单井向井组转变,单一吞吐向复合吞吐转变 |
水气交替注入 | CO2和水按比例交替注入 | 注入比例、交替周期、注入顺序 | 扩大波及体积、降低流度比、保持油层压力 | 操作相对复杂、控制难度大、风险与不确定性大 | 地层非均质性较强、需要提高波及效率的油藏 | 开发监测智能系统,研发环境友好型注入剂 |
水力压裂辅助 | 预先或同步进行水力压裂 | 压裂液性质、压裂工艺参数 | 增强CO2注入效率、降低注入难度 | 对油藏存在潜在伤害、需要额外设备和操作成本 | 渗透率低、储层条件好的油藏 | 工艺参数优化与动态匹配 |
[1] | 张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023. |
ZHANG Xian, YANG Xiaoliang, LU Xi, et al. China Carbon Dioxide Capture, Utilization and Storage (CCUS) Annual Report (2023)[R]. Beijing: China Agenda 21 Management Center, Global Carbon Capture and Storage Research Institute, Tsinghua University, 2023. | |
[2] | REZK M G, IBRAHIM A F, ADEBAYO A R. Uncertainty quantification for CO2 storage during intermittent CO2-EOR in oil reservoirs[J]. International Journal of Coal Geology, 2023, 266: 104177. |
[3] | 周银邦, 王锐, 何应付, 等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率, 2023, 30(2): 162-167. |
ZHOU Yinbang, WANG Rui, HE Yingfu, et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 162-167. | |
[4] | 柯怡兵, 李义连, 张炜, 等. 岩盐沉淀对咸水层二氧化碳地质封存注入过程的影响: 以江汉盆地为例[J]. 地质科技情报, 2012, 31(3): 109-115. |
KE Yibing, LI Yilian, ZHANG Wei, et al. Impact of halite precipitation on CO2 injection into saline aquifers: A case study of Jianghan basin[J]. Geological Science and Technology Information, 2012, 31(3): 109-115. | |
[5] | 胡叶军, 王蔚, 任杰, 等. 深部咸水层CO2地质封存对地层压力环境的影响[J]. 河海大学学报(自然科学版), 2016, 44(6): 512-518. |
HU Yejun, WANG Wei, REN Jie, et al. Effect of CO2 geological sequestration in deep saline aquifer on formation pressure environment[J]. Journal of Hohai University (Natural Sciences), 2016, 44(6): 512-518. | |
[6] | 王永胜. CO2咸水层封存砂岩储层孔隙尺度变化规律及可注性研究: 基于神华CCS示范工程[D]. 武汉: 中国地质大学, 2021. |
WANG Yongsheng. Study on the variation of pore scale and injectability of CO2 saltwater sequestered sandstone reservoir[D]. Wuhan: China University of Geosciences, 2021. | |
[7] | KIM K Y, HAN W S, OH J, et al. Characteristics of salt-precipitation and the associated pressure build-up during CO2 storage in saline aquifers[J]. Transport in Porous Media, 2012, 92(2): 397-418. |
[8] | 汤翔. 致密油藏衰竭开采压力传导规律与吞吐开发动态研究[D]. 北京: 中国石油大学(北京), 2022. |
TANG Xiang. Study on the pressure conduction law of depletion and dynamic characteristics of huff and puff in tight oil reservoir[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
[9] | BERGMO P E S, GRIMSTAD A A, LINDEBERG E. Simultaneous CO2 injection and water production to optimise aquifer storage capacity[J]. International Journal of Greenhouse Gas Control, 2011, 5(3): 555-564. |
[10] | 王千, 申建, 赵岳, 等. 煤系致密砂岩储层注CO2启动压力梯度动态规律[J]. 煤炭学报, 2023, 48(8): 3172-3181. |
WANG Qian, SHEN Jian, ZHAO Yue, et al. Dynamic threshold pressure gradient characteristics of CO2 injection in coal-measure tight sandstone reservoirs[J]. Journal of China Coal Society, 2023, 48(8): 3172-3181. | |
[11] | 赵宁宁. 二氧化碳地质储存中储层孔渗及矿物特征对其运移演化的影响[D]. 长春: 吉林大学, 2018. |
ZHAO Ningning. Study on the influence of porosity and permeability and mineral characteristics on CO2 geological storage[D]. Changchun: Jilin University, 2018. | |
[12] | 高阳. 鄂尔多斯盆地CCS地质封存中CO2-咸水-地层岩反应研究[D]. 北京: 中国石油大学(北京), 2018. |
GAO Yang. Investigation of CO2-formation brine-rock reaction of Shenhua Ordos CCS project[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
[13] | 张烈辉, 张涛, 赵玉龙, 等. 二氧化碳-水-岩作用机理及微观模拟方法研究进展[J]. 石油勘探与开发, 2024, 51(1): 199-211. |
ZHANG Liehui, ZHANG Tao, ZHAO Yulong, et al. A review of interaction mechanisms and microscopic simulation methods for CO2-water-rock system[J]. Petroleum Exploration and Development, 2024, 51(1): 199-211. | |
[14] | 施雷庭, 户海胜, 张玉龙, 等. 致密砂砾岩矿物与超临界CO2和地层水相互作用[J]. 油田化学, 2019, 36(4): 640-645. |
SHI Leiting, HU Haisheng, ZHANG Yulong, et al. Interaction of tight glutenite mineral with supercritical CO2 and formation water[J]. Oilfield Chemistry, 2019, 36(4): 640-645. | |
[15] | 王闯. 砂岩超临界CO2渗流特征及水岩作用影响研究[D]. 徐州: 中国矿业大学, 2019. |
WANG Chuang. Seepage characteristics of supercritical CO2 in sandstone and influence of water-rock interaction[D]. Xuzhou: China University of Mining and Technology, 2019. | |
[16] | 李富杰, 齐有强, 弓昊天. 矿物溶解再沉淀过程研究综述[J]. 矿物岩石地球化学通报, 2024, 43(1): 240-258. |
LI Fujie, QI Youqiang, GONG Haotian. Review on the process of mineral dissolution and reprecipitation[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(1): 240-258. | |
[17] | 沈臻欢, 于炳松, 韩舒筠, 等. 碳酸盐胶结物溶解—沉淀的热力学平衡在碎屑岩储层质量预测中的应用: 以渤南洼陷沙三段为例[J]. 东北石油大学学报, 2018, 42(5): 63-72, 9. |
SHEN Zhenhuan, YU Bingsong, HAN Shujun, et al. Application of thermodynamic equilibrium for dissolution-precipitation of carbonate cements in prediction of clastic reservoir quality: A case study from Es3, Bonan sag[J]. Journal of Northeast Petroleum University, 2018, 42(5): 63-72, 9. | |
[18] | MULLER N, QI R, MACKIE E, et al. CO2 injection impairment due to halite precipitation[J]. Energy Procedia, 2009, 1(1): 3507-3514. |
[19] | SPYCHER N, PRUESS K, ENNIS-KING J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar[J]. Geochimica et Cosmochimica Acta, 2003, 67(16): 3015-3031. |
[20] | KIM M, SELL A, SINTON D. Aquifer-on-a-chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration[J]. Lab on a Chip, 2013, 13(13): 2508-2518. |
[21] | 刘漪雯, 付美龙, 王长权, 等. 二氧化碳驱后微粒运移对低渗透储层的伤害及对渗流能力的影响[J]. 油田化学, 2024, 41(2): 238-244. |
LIU Yiwen, FU Meilong, WANG Changquan, et al. Damage of particle migration to low permeability reservoir after carbon dioxide flooding and its influence on seepage capacity[J]. Oilfield Chemistry, 2024, 41(2): 238-244. | |
[22] | 杨术刚, 蔡明玉, 张坤峰, 等. CO2-水-岩相互作用对CO2地质封存体物性影响研究进展及展望[J]. 油气地质与采收率, 2023, 30(6): 80-91. |
YANG Shugang, CAI Mingyu, ZHANG Kunfeng, et al. Research progress and prospect of CO2-water-rock interaction on petrophysical properties of CO2 geological sequestration[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 80-91. | |
[23] | LIU Q, LI J, LIANG B, et al. Microscopic flow of CO2 in complex pore structures: A recent 10-year review[J]. Sustainability, 2023, 15(17): 12959. |
[24] | 杨国栋. 鄂尔多斯盆地二氧化碳地质封存机理研究[D]. 武汉: 中国地质大学, 2015. |
YANG Guodong. Study on the mechanism of carbon dioxide geological storage in Ordos Basin[D]. Wuhan: China University of Geosciences, 2015. | |
[25] | 李颖, 马寒松, 李海涛, 等. 超临界CO2对碳酸盐岩储层的溶蚀作用研究[J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
LI Ying, MA Hansong, LI Haitao, et al. Dissolution of supercritical CO2 on carbonate reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295. | |
[26] | XIE J, ZHANG K, LI C, et al. Preliminary study on the CO2 injectivity and storage capacity of low-permeability saline aquifers at Chenjiacun site in the Ordos Basin[J]. International Journal of Greenhouse Gas Control, 2016, 52: 215-230. |
[27] | TENG Y, WANG P, XIE H, et al. Capillary trapping characteristics of CO2 sequestration in fractured carbonate rock and sandstone using MRI[J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104809. |
[28] | DING N, SI L, WEI J, et al. Study on coal wettability under different gas environments based on the adsorption energy[J]. ACS Omega, 2023, 8(24): 22211-22222. |
[29] | ARIF M, ABU-KHAMSIN S A, IGLAUER S. Wettability of rock/CO2/brine and rock/oil/CO2-enriched-brine systems: Critical parametric analysis and future outlook[J]. Advances in Colloid and Interface Science, 2019, 268: 91-113. |
[30] | 肖娜, 李实, 林梅钦, 等. CO2-水-岩石相互作用对砂岩储集层润湿性影响机理[J]. 新疆石油地质, 2017, 38(4): 460-465. |
XIAO Na, LI Shi, LIN Meiqin, et al. Influence of CO2-water-rock interactions on wettability of sandstone reservoirs[J]. Xinjiang Petroleum Geology, 2017, 38(4): 460-465. | |
[31] | 李博文, 孙灵辉, 刘先贵, 等. CO2-水-岩地化反应对致密砂砾岩物性、可动用性和微观孔隙结构影响[J]. 应用化工, 2023, 52(6): 1615-1618, 1625. |
LI Bowen, SUN Linghui, LIU Xiangui, et al. Effect of CO2-brine-rock reaction on physical properties, mobility and microscopic pore structure of tight conglomerate[J]. Applied Chemical Industry, 2023, 52(6): 1615-1618. | |
[32] | 杨术刚, 张坤峰, 刘双星, 等. 页岩渗透率测定方法及影响因素研究进展[J]. 油气地质与采收率, 2023, 30(5): 31-40. |
YANG Shugang, ZHANG Kunfeng, LIU Shuangxing, et al. Research progress on measurement methods and influencing factors of shale permeability[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 31-40. | |
[33] | SONG J, ZHANG D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration[J]. Environmental Science & Technology, 2013, 47(1): 9-22. |
[34] | 王紫剑, 唐玄, 荆铁亚, 等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质, 2022, 36(5): 1414-1431. |
WANG Zijian, TANG Xuan, JING Tieya, et al. Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience, 2022, 36(5): 1414-1431. | |
[35] | 陈博文, 王锐, 李琦, 等. CO2地质封存盖层密闭性研究现状与进展[J]. 高校地质学报, 2023, 29(1): 85-99. |
CHEN Bowen, WANG Rui, LI Qi, et al. Status and advances of research on caprock sealing properties of CO2 geological storage[J]. Geological Journal of China Universities, 2023, 29(1): 85-99. | |
[36] | 陈晨, 何邢益, 牛庆合, 等. 超临界CO2注入煤层对顶板岩石纵波速度及力学响应特征研究[J]. 煤田地质与勘探, 2021, 49(5): 98-104. |
CHEN Chen, HE Xingyi, NIU Qinghe, et al. Study on P-wave velocity and mechanical response characteristic of rock in coal seam roof with supercritical CO2 injection[J]. Coal Geology & Exploration, 2021, 49(5): 98-104. | |
[37] | 侯冰, 宋振云, 贾建鹏, 等. 超临界二氧化碳对致密砂岩力学特性影响的实验研究 [J]. 中国海上油气, 2018, 30(5): 109-115. |
HOU Bing, SONG Zhenyun, JIA Jianpeng, et al. Experimental study on the effect of supercritical carbon dioxide on mechanical properties of tight sandstone [J]. China Offshore Oil and Gas, 2018, 30(5): 109-115. | |
[38] | 于子望, 卢帅屹, 白林, 等. CO2地质封存岩石力学问题研究进展[J]. 吉林大学学报(地球科学版), 2023, 53: 1-15. |
YU Ziwang, LU Shuaiyi, BAI Lin, et al. Research progress on rock mechanics of CO2 geological sequestration[J]. Journal of Jilin University (Earth Science Edition), 2023, 53: 1-15. | |
[39] | 刘思雨, 杨国栋, 黄冕, 等. 人工裂缝参数对CO2-ESGR中CO2封存和CH4开采的影响[J]. 石油与天然气化工, 2024, 53(2): 94-100. |
LIU Siyu, YANG Guodong, HUANG Mian, et al. Effects of artificial fracture parameters on CO2 sequestration and CH4 production in CO2-ESGR[J]. Chemical Engineering of Oil & Gas, 2024, 53(2): 94-100. | |
[40] | WANG S, HUANG Z, WU Y S, et al. A semi-analytical correlation of thermal-hydraulic-mechanical behavior of fractures and its application to modeling reservoir scale cold water injection problems in enhanced geothermal reservoirs[J]. Geothermics, 2016, 64: 81-95. |
[41] | 李会元. 废弃油气藏CO2埋存过程中盖层完整性的评价[D]. 大庆: 东北石油大学, 2015. |
LI Huiyuan. Evaluation for the caprock integrity of the CO2 sequestration in depleted oil and gas reservoirs[D]. Daqing: Northeast Petroleum University, 2015. | |
[42] | 崔振东, 刘大安, 曾荣树, 等. CO2地质封存工程的潜在地质环境灾害风险及防范措施[J]. 地质论评, 2011, 57(5): 700-706. |
CUI Zhendong, LIU Daan, ZENG Rongshu, et al. Potential geological and environmental risks and its prevention measures for CO2 geological storage projects[J]. Geological Review, 2011, 57(5): 700-706. | |
[43] | STREIT J E, HILLIS R R. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock[J]. Energy, 2004, 29(9/10): 1445-1456. |
[44] | TAGHIPOUR M, GHAFOORI M, LASHKARIPOUR G R, et al. A geomechanical evaluation of fault reactivation using analytical methods and numerical simulation[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 695-719. |
[45] | 王展鹏, 刘琦, 叶航, 等. CO2地质封存泄漏监测技术研究进展[J]. 环境工程, 2023, 41(10): 69-81. |
WANG Zhanpeng, LIU Qi, YE Hang, et al. Research progress on CO2 geological storage leakage and monitoring[J]. Environmental Engineering, 2023, 41(10): 69-81. |
[1] | YANG Shugang, REN Jinman, CAI Mingyu, LIU Haotong, LIU Shuangxing, XUE Ming, ZHANG Kunfeng. Investigation on occurrence states of CO2 storage in formations with gas field produced water reinjection [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 656-663. |
[2] | Li Danlu,Li Lin,Ma Jingfeng,Wang Haofan. Study on AVO model of time-lapse seismic monitoring for CO2 flooding and storage: Taking low porosity and low permeability reservoir in Ordos basin as an example [J]. Reservoir Evaluation and Development, 2019, 9(3): 82-88. |
|