Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (2): 320-328.doi: 10.13809/j.cnki.cn32-1825/te.2022.02.007
• Tight Gas Exploration • Previous Articles Next Articles
YOU Lijun(),WANG Yang,KANG Yili,TANG Jirui,LIU Jiang,YANG Dongsheng
Received:
2021-11-24
Online:
2022-05-07
Published:
2022-04-26
CLC Number:
Lijun YOU,Yang WANG,Yili KANG, et al. Physical properties of water-bearing tight sandstone reservoir for improving permeability by thermal stimulation[J]. Reservoir Evaluation and Development, 2022, 12(2): 320-328.
Table 1
Initial physical parameters of experimental samples"
岩心编号 | 长度 (cm) | 直径 (cm) | 渗透率 (10-3μm2) | 孔隙度 (%) |
---|---|---|---|---|
JD-1 | 5.692 | 2.535 | 0.038 | 16.79 |
JD-2 | 5.696 | 2.539 | 0.02 | 17.01 |
JD-3 | 5.756 | 2.530 | 0.042 | 17.99 |
JD-4 | 5.686 | 2.546 | 0.018 | 17.20 |
JD-5 | 5.530 | 2.550 | 0.021 | 17.21 |
JD-6 | 5.672 | 2.532 | 0.027 | 17.40 |
JD-7 | 5.792 | 2.540 | 0.033 | 17.35 |
JD-8 | 5.721 | 2.535 | 0.036 | 17.12 |
DB-1 | 5.577 | 2.489 | 0.099 | 6.35 |
DB-2 | 5.642 | 2.488 | 0.087 | 5.53 |
DB-3 | 5.662 | 2.490 | 0.069 | 4.71 |
DB-4 | 5.170 | 2.540 | 0.124 | 8.92 |
DB-5 | 5.692 | 2.488 | 0.041 | 4.01 |
DB-6 | 5.582 | 2.490 | 0.055 | 3.99 |
DB-7 | 5.676 | 2.488 | 0.122 | 7.84 |
DB-8 | 5.258 | 2.562 | 0.091 | 6.56 |
HA-1 | 6.176 | 2.509 | 0.699 | 7.76 |
HA-2 | 6.166 | 2.511 | 0.525 | 6.25 |
HA-3 | 6.196 | 2.523 | 0.256 | 4.36 |
HA-4 | 6.146 | 2.508 | 0.426 | 9.32 |
HA-5 | 6.118 | 2.510 | 0.399 | 9.82 |
HA-6 | 6.182 | 2.516 | 0.352 | 14.03 |
HA-7 | 6.158 | 2.514 | 0.899 | 8.25 |
HA-8 | 6.163 | 2.518 | 0.532 | 9.35 |
[1] | 康毅力, 罗平亚. 中国致密砂岩气藏勘探开发关键工程技术现状与展望[J]. 石油勘探与开发, 2007, 34(2):239-245. |
KANG Yili, LUO Pingya. Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China[J]. Petroleum Exploration and Development, 2007, 34(2): 239-245. | |
[2] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):166-178. |
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenge and prospects(Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. | |
[3] | 游利军, 谢本彬, 杨建, 等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业, 2018, 38(12):61-69. |
YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3):61-69. | |
[4] | JAMALUDDIN A K M, HAMELIN M, HARKE K, et al. Field testing of the formation heat treatment process[C]// Paper PETSOC-96- 88 presented at the Annual Technical Meeting, Calgary, Alberta, Canada, June 1996. |
[5] | JAMALUDDIN A K M, VANDAMME L M, NAZARKOT W, et al. Heat treatment for clay-related near wellbore formation damage[J]. Canadian Petroleum Technology, 1998, 37(1): 43-62. |
[6] | 康毅力, 杨东升, 游利军, 等. 富有机质页岩高温热激增渗效果实验评价方法[J]. 天然气地球科学, 2021, 32(1):86-97. |
KANG Yili, YANG Dongsheng, YOU Lijun, et al. Experimental evaluation method for permeability changes of organic-rich shales by high-temperature thermal stimulation[J]. Natural Gas Geoscience, 2021, 32(1): 86-97. | |
[7] | 游利军, 康毅力. 热处理对致密岩石物理性质的影响[J]. 地球物理学进展, 2009, 24(5):1850-1854. |
YOU Lijun, KANG Yili. Effects of thermal treatment on physical property of tight rocks[J]. Progress in Geophysics, 2009, 24(5): 1850-1854. | |
[8] | 陈明君, 康毅力, 游利军. 利用高温热处理提高致密储层渗透性[J]. 天然气地球科学, 2013, 24(6):1226-1231. |
CHEN Mingjun, KANG Yili, YOU Lijun. Advantages in formation heat treatment to enhance permeability in tight reservoir[J]. Natural Gas Geoscience, 2013, 24(6): 1226-1231. | |
[9] |
WANG H C, REZAEE R, SAEEDI A, et al. Numerical modelling of microwave heating treatment for tight gas sand reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 152: 495-504.
doi: 10.1016/j.petrol.2017.01.055 |
[10] | 赵阳升, 万志军, 张渊, 等. 岩石热破裂与渗透性相关规律的试验研究[J]. 岩石力学与工程学报, 2010, 29(10):1970-1976. |
ZHAO Yangsheng, WAN Zhijun, ZHANG Yuan, et al. Experimental study of related laws of rock thermal cracking and permeability[J]. Chinese Journal of Rock mechanics and Engineering, 2010, 29(10): 19701-1976. | |
[11] | 邵天琛. 高温电加热致密砂岩致裂机理研究[D]. 成都:西南石油大学, 2019. |
SHAO Tianchen. Study on cracking mechanism of dense sandstone by high-temperature electric heating[D]. Chengdu: Southwest Petroleum University, 2019. | |
[12] | 游利军, 李鑫磊, 康毅力, 等. 含水富有机质页岩重复升温热激增渗实验[J]. 西南石油大学学报(自然科学版), 2021, 43(1):120-132. |
YOU Lijun, LI Xinlei, KANG Yili, et al. An experimental study on cyclical thermal stimulation to enhance permeability of water-bearing organic-rich shale[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1):120-132. | |
[13] | 张龙海, 刘忠华, 周灿灿, 等. 低孔低渗储集层岩石物理分类方法的讨论[J]. 石油勘探与开发, 2008, 35(6):763-768. |
ZHANG Longhai, LIU Zhonghua, ZHOU Cancan, et al. A method for petrophysical classification of low porosity and low permeability reservoirs[J]. Petroleum Exploration and Development, 2008, 35(6): 763-768. | |
[14] | KEANEY M G, JONES C, MEREDITH P, et al. Thermal damage and the evolution of crack connectivity and permeability in ultra-low permeability rocks[C]// Paper ARMA-04-537 presented at the Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS), Houston, Texas, America, June 2004. |
[15] | BARSHAD I. Temperature and heat of reaction calibration of the thermal apparatus[J]. American Mineralogist 1952, 37(2): 667-694. |
[16] |
ROSS C M, RANGEL E R, CASTANIER L M, et al. A laboratory investigation of temperature-induced sand consolidation[J]. SPE Journal, 2006, 11(2): 206-215.
doi: 10.2118/92398-PA |
[17] |
CHOPRA A K, STEIN M H, ADER J C. Development of reservoir descriptions to aid in design of EOR projects[J]. SPE Reservoir Engineering, 1989, 4(2): 143-150.
doi: 10.2118/16370-PA |
[18] | 刘震, 曾宪斌, 张万选. 沉积盆地地温与地层压力关系研究[J]. 地质学报, 1997, 71(2): 180-185. |
LIU Zhen, ZENG Xianbin, ZHANG Wanxuan. Study on the relationship between geothermal and formation pressure in sedimentary basins[J]. Journal of Geology, 1997, 71(2): 180-185 | |
[19] | 刘震, 孙迪, 李潍莲, 等. 沉积盆地地层孔隙动力学研究进展[J]. 石油学报, 2016, 37(10):1193-1215. |
LIU Zhen, SUN Di, LI Weilian, et al. Advances in research on stratigraphic porodynamics of sedimentary basins[J]. Acta Petrolei Sinica, 2016, 37(10): 1193-1215. | |
[20] | 郭志峰, 刘震, 刘鹏, 等. 高温水热增压实验研究及地质启示[J]. 石油实验地质, 2016, 38(6):836-841. |
GUO Zhifeng, LIU Zhen, LIU Peng, et al. Experimental analysis of aquathermal pressuring under high temperature conditions and its geological implications[J]. Petroleum Geology and Experiment, 2016, 38(6): 836-841. | |
[21] | 夏新宇, 宋岩. 沉降及抬升过程中温度对流体压力的影响[J]. 石油勘探与开发, 2001, 28(3):8-11. |
XIA Xinyu, SONG Yan. Temperature effects on geopressure during deposition and erosion[J]. Petroleum Exploration and Development, 2001, 28(3): 8-11. | |
[22] | 赵国欣. 烃源岩层中异常高压研究:以渤海湾盆地东营凹陷古近系为例[J]. 石油实验地质, 2008, 30(4):340-344. |
ZHAO Guoxin. Study of the abnormal high-pressure in hydrocarbon source rocks-taking Paleogene in the Dongying sag, the Bohai bay basin as an example[J]. Petroleum Geology & Experiment, 2008, 30(4): 340-344. | |
[23] | KENNEDY G C, HOLSER W T. Pressure-volume-temperature and phase relations of water and carbon dioxide[M]// GSA Memoirs, 1966, 97: 371-383. |
[24] | 孟巧荣, 康志勤, 赵阳升, 等. 油页岩热破裂及起裂机制试验[J]. 中国石油大学学报:自然科学版, 2010, 34(4):89-92. |
MENG Qiaorong, KANG Zhiqin, ZHAO Yangsheng, et al. Experiment of thermal cracking and crack initiation mechanism of oil shale[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(4): 89-92. | |
[25] | 陈顒, 吴晓东, 张福勤. 岩石热开裂的实验研究[J]. 科学通报, 1999, 4(8):880-883. |
CHEN Yu, WU Xiaodong, ZHANG Fuqin. Experimental study on rock thermal cracking[J]. Chinese Science Bulletin, 1999, 4(8): 880-883. | |
[26] | 郑见超, 李斌, 刘羿伶, 等. 塔里木盆地下寒武统玉尔吐斯组烃源岩热演化模拟分析[J]. 油气藏评价与开发, 2018, 8(6):7-12. |
ZHENG Jianchao, LI Bin, LIU Liling, et al. Study on thermal evolution modeling of lower Cambrian Yuertusi source rock, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2018, 8(6): 7-12. | |
[27] | 左建平, 谢和平, 周宏伟. 等. 不同温度作用下砂岩热开裂的实验研究[J]. 地球物理学学报, 2007, 50(4):1150-1155. |
ZUO Jianping, XIE Heping, ZHOU Hongwei, et al. Experimental research on thermal cracking of sandstone under different temperature[J]. Chinese Journal of Geophysics, 2007, 50(4): 1150-1155. |
[1] | YAN Huanrong,ZHAN Zedong,LI Yajing,BI Youyi,DENG Meizhou,FENG Ying. High yield enrichment law for tight sandstone gas reservoir: A case study of the second member of Xujiahe Formation gas reservoir in Xinchang-Hexinchang gas field of western Sichuan Depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 541-548. |
[2] | LAI Weirong,YANG Guopeng,SONG Peidong,ZHANG Shunli,WANG Zheng. Application of facies-controlled prestack geostatistical inversion in reservoir prediction: A case study of tight sandstone reservoir in the second member of Xujiahe Formation in western Sichuan Depression, Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 586-592. |
[3] | ZHOU Feng,HUANG Shilin,LI Xiaoming,LIAO Kaigui,LI Yong. Quantitative evaluation of tight gas reservoir classification based on analytic hierarchy process: A case study of Penglaizhen Formation gas reservoir in Xinchang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 468-474. |
[4] | GUO Zhidong, KANG Yili, WANG Yubin, GU Linjiao, YOU Lijun, CHEN Mingjun, YAN Maoling. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150. |
[5] | ZHAO Di, MA Sen, CAO Yanhui. Seismic rock physics analysis and prediction model establishment of Shaximiao Formation in Zhongjiang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 608-613. |
[6] | XIA Haibang, HAN Kening, SONG Wenhui, WANG Wei, YAO Jun. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635. |
[7] | CUI Chuanzhi, LI Huailiang, WU Zhongwei, ZHANG Chuanbao, LI Hongbo, ZHANG Yinghua, ZHENG Wenkuan. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 686-694. |
[8] | YANG Zhaozhong, ZHENG Nanxin, ZHU Jingyi, LI Xiaogang. Preparation of nanoparticle-stabilized foam fracturing fluid and its foam stabilization mechanism [J]. Reservoir Evaluation and Development, 2023, 13(2): 260-268. |
[9] | YANG Zhaozhong,YUAN Jianfeng,ZHU Jingyi,LI Xiaogang,LI Yang,WANG Hao. Thermal injection stimulation to enhance coalbed methane recovery [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 617-625. |
[10] | LIU Chengchuan,WANG Yongfei,BI Youyi. Efficient development technique of tight sandstone gas reservoir in narrow channel of Zhongjiang Gas Field [J]. Reservoir Evaluation and Development, 2022, 12(2): 345-355. |
[11] | TANG Botao,ZENG Ji,CHEN Weihua,CHEN Yixin,WANG Tao,LIU Cheng,FENG Feng. Multi cluster perforation optimization design method and its application effect of tight sandstone horizontal wells in Qiulin area, central Sichuan [J]. Reservoir Evaluation and Development, 2022, 12(2): 337-344. |
[12] | HAN Lei,LIU Junzhou,YANG Rui,ZHANG Guangzhi,ZHOU You. Application of pre-stack elastic impedance inversion method based on VTI medium: A case of tight sandstone fractured reservoir in Xujiahe Formation, Western Sichuan Depression [J]. Reservoir Evaluation and Development, 2022, 12(2): 313-319. |
[13] | ZHAO Lan. Development characteristics of microfractures in tight sandstone reservoir and its influence on physical properties: A case study of Shiligiahan zone in Hangjinqi [J]. Reservoir Evaluation and Development, 2022, 12(2): 285-291. |
[14] | LIU Lu,WANG Yongfei,ZHAN Zedong,XIE Jinfeng. Main control factors of horizontal wells in J2s2 tight sandstone gas reservoir of Xinchang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 890-896. |
[15] | CHEN Xiang,ZHAO Liqiang,LI Xiaofan,HU Binghua,HU Zhongtai,YAO Fengsheng. Volumetric acid fracturing technology of offshore tight sandstone gas reservoirs [J]. Reservoir Evaluation and Development, 2020, 10(5): 120-126. |
|