Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (5): 756-763.doi: 10.13809/j.cnki.cn32-1825/te.2024.05.011
• Engineering Process • Previous Articles Next Articles
LIU Xugang1,2(), LI Guofeng1,2, LI Lei1(), WANG Ruixia1, FANG Yanming1
Received:
2023-12-28
Online:
2024-10-11
Published:
2024-10-26
CLC Number:
LIU Xugang,LI Guofeng,LI Lei, et al. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763.
Table 2
Three-phase contact angles of “gas-water-solid” in shale treated with different agents"
处理剂 种类 | “气-水-固”三相接触角/(°) | 平均值/(°) | |||||
---|---|---|---|---|---|---|---|
DA-31 | DA-32 | DA-33 | DA-34 | DA-35 | DA-36 | ||
OA-14 | 23.2 | 31.3 | 23.2 | 24.9 | 22.4 | 20.1 | 24.18 |
CTAB | 21.2 | 26.5 | 24.5 | 25.6 | 20.9 | 22.4 | 23.52 |
HSB1214 | 28.9 | 23.8 | 19.3 | 25.2 | 21.6 | 29.5 | 24.71 |
LHSB | 40.9 | 41.3 | 36.8 | 29.5 | 22.9 | 24.2 | 32.60 |
AOS | 9.4 | 15.4 | 8.8 | 6.7 | 13.0 | 15.3 | 11.40 |
现用改性剂 | 25.1 | 30.2 | 22.8 | 21.5 | 17.6 | 22.3 | 23.25 |
常规滑溜水 | 42.1 | 44.2 | 29.9 | 26.8 | 32.7 | 48.1 | 37.30 |
Table 3
Three-phase contact angles of “oil-water-solid” in shale treated with different agents after 48 hours of soaking in simulated oil"
处理剂种类 | 实验 条件 | “油-水-固”三相接触角/(°) | 平均值/(°) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DA-37 | DA-38 | DA-39 | DA-40 | |||||||
OA-14 | 模拟油浸泡 48 h | 63.2 | 84.1 | 70.8 | 88.5 | 75.15 | ||||
CTAB | 67.2 | 71.1 | 65.8 | 59.4 | 65.88 | |||||
HSB1214 | 87.6 | 94.1 | 79.7 | 88.5 | 87.48 | |||||
LHSB | 72.9 | 88.2 | 95.0 | 92.4 | 87.13 | |||||
AOS | 50.8 | 71.4 | 55.7 | 72.2 | 60.53 | |||||
现用改性剂 | 63.5 | 58.9 | 68.7 | 65.1 | 64.05 | |||||
常规滑溜水 | 98.3 | 86.9 | 92.1 | 98.6 | 93.98 |
Table 4
Modified fracturing fluid system formulation, surface and interfacial tension"
改性压裂液体系 | 配方 | 油水表面张力/(mN/m) | 油水界面张力/(mN/m) |
---|---|---|---|
常规滑溜水 | 0.02%降阻剂+0.1%助排剂+0.1%破乳剂 | 25.1 | 0.650 |
现用改性压裂液体系 | 常规滑溜水+0.05%驱油剂+0.1%润湿反转剂 | 24.2 | 0.062 |
OA-14改性压裂液体系 | 常规滑溜水+0.1%OA-14 | 26.8 | 0.095 |
AOS改性压裂液体系 | 常规滑溜水+0.1%AOS | 21.5 | 0.041 |
CTAB改性压裂液体系 | 常规滑溜水+0.05%CTAB | — | — |
[1] | 管保山, 刘玉婷, 梁利, 等. 页岩油储层改造和高效开发技术[J]. 石油钻采工艺, 2019, 41(2): 212-223. |
GUAN Baoshan, LIU Yuting, LIANG Li, et al. Shale oil reservoir reconstruction and efficient development technology[J]. Oil Drilling & Production Technology, 2019, 41(2): 212-223. | |
[2] |
刘显阳, 李士祥, 周新平, 等. 鄂尔多斯盆地石油勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2070-2090.
doi: 10.7623/syxb202312005 |
LIU Xianyang, LI Shixiang, ZHOU Xinping, et al. New fields, new types and resource potentials of petroleum exploration in Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2070-2090.
doi: 10.7623/syxb202312005 |
|
[3] |
付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.
doi: 10.11698/PED.2020.05.03 |
FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. | |
[4] | SAPUTRA I W R, PARK K H, ZHANG F, et al. Surfactant assisted spontaneous imbibition to improve oil recovery on the Eagle Ford and Wolf camp shale oil reservoir: Laboratory to field analysis[J]. Energy & Fuels, 2019, 33(8): 6904-6920. |
[5] | 赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40(6): 1333-1338. |
ZHAO Qingmin, LUN Zengmin, ZHANG Xiaoqing, et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil & Gas Geology, 2019, 40(6): 1333-1338. | |
[6] |
吴承美, 许长福, 陈依伟, 等. 吉木萨尔页岩油水平井开采实践[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 33-41.
doi: 10.11885/j.issn.1674-5086.2021.01.21.01 |
WU Chengmei, XU Changfu, CHEN Yiwei, et al. The horizontal well exploitation practice of Jimsar shale oil[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 33-41. | |
[7] | 范华波, 薛小佳, 李楷, 等. 驱油型表面活性剂压裂液的研发与应用[J]. 石油与天然气化工, 2019, 48(1): 74-79. |
FAN Huabo, XUE Xiaojia, LI Kai, et al. Development and application of flooding surfactant fracturing fluid[J]. Chemical Engineering of Oil & Gas, 2019, 48(1): 74-79. | |
[8] | 张志升. 适用于致密砂岩储层的多功能表面活性剂驱油压裂液体系[J]. 大庆石油地质与开发, 2020, 39(1): 169-174. |
ZHANG Zhisheng. Multifunction surfactant oil-displacing fracturing fluid system suitable for tight sandstone reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(1): 169-174. | |
[9] | 肖程释. 复合压裂液体系提高致密油藏渗吸采收率实验研究[D]. 大庆: 东北石油大学, 2017. |
XIAO Chengshi. Experimental study on improving imbibition recovery of tight reservoir by composite fracturing fluid system[D]. Daqing: Northeast Petroleum University, 2017. | |
[10] | 张金风, 梁成钢, 陈依伟, 等. 表面活性剂对页岩油储层高温高压渗吸驱油效果的影响因素[J]. 大庆石油地质与开发, 2023, 42(3): 167-174. |
ZHANG Jinfeng, LIANG Chenggang, CHEN Yiwei, et al. Influence factors of surfactant on high-temperature and high-pressure imbibition displacement effect of shale oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(3): 167-174. | |
[11] | 蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展[J]. 力学进展, 2012, 42(6): 735-754. |
CAI Jianchao, YU Boming. Advances in studies of spontaneous imbibition in porous media[J]. Advances in Mechanics, 2012, 42(6): 735-754. | |
[12] | 高陪. 致密砂岩储层渗吸特征实验研究: 以Y致密气藏和H致密油藏为例[D]. 西安: 西安石油大学, 2016. |
GAO Pei. Experimental study on permeability and absorption characteristics of tight sandstone reservoir: In Y tight gas reservoir and H tight reservoir as an example[D]. Xi'an: Xi'an Shiyou University, 2016. | |
[13] | VALLURI M K, ALVAREZ J O, SCHECHTER D S. Study of the rook/fluid interactions of sodium and calcium brines with ultra-tight rock surfaces and their impact on improving oil recovery by spontaneous imbibition[C]// Paper SPE-180274-MS presented at the SPE Low Perm Symposium, Denver, Colorado, USA, May 2016. |
[14] |
HU Q H, EWING P R, DULTZ S. Low pore connectivity in natural rock[J]. Journal of Contaminant Hydrology, 2012, 133: 76-83.
doi: 10.1016/j.jconhyd.2012.03.006 pmid: 22507286 |
[15] | ROYCHAUDHURI B, TSOTISIS T, JESSEN K. An experimental investigation of spontaneous imbibition in gas shales[C]// Paper SPE-147652-MS presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October 2011. |
[16] | MENG M M. GE H K. JI W M, et al. Investigation on the variation of shale permeability with spontaneous imbibition time: Sandstones and volcanic rocks as comparative study[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1546-1554. |
[17] | JADHUNANDAN P P, MORROW N R. Effect of wettability on waterflood recovery for crude-oil/brine/rock systems[J]. Society of Petroleum Engineers, 1995, 10(1): 40-46. |
[18] |
李士奎, 刘卫东, 张海琴, 等. 低渗透油藏自发渗吸驱油实验研究[J]. 石油学报, 2007, 28(2): 109-112.
doi: 10.7623/syxb200206022 |
LI Shikui, LIU Weidong, ZHANG Haiqin, et al. Experimental study of spontaneous imbibition in low-permeability reservoir[J]. Acta Petrolei Sinica, 2007, 28(2): 109-112.
doi: 10.7623/syxb200206022 |
|
[19] | 李爱芬, 凡田友, 赵琳. 裂缝性油藏低渗透岩心自发渗吸实验研究[J]. 油气地质与采收率, 2011, 18(5): 67-69. |
LI Aifen, FAN Tianyou, ZHAO lin. Experimental study of spontaneous imbibition in low permeability core, fractured reservoir[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(5): 67-69. | |
[20] |
汪伟英, 张公社. 束缚水饱和度、岩石性质对自吸的影响[J]. 石油学报, 2000, 21(3): 66-69.
doi: 10.7623/syxb200003013 |
WANG Weiying, ZHANG Gongshe. Effect of initial water saturation and rock lithology on spontaneous imbibition[J]. Acta Petrolei Sinica, 2000, 21(3): 66-69.
doi: 10.7623/syxb200003013 |
|
[21] |
CAI J C, JIN T X, KOU J S, et al. Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems[J]. Langmuir, 2021, 37(5): 1623-1636.
doi: 10.1021/acs.langmuir.0c03134 pmid: 33512167 |
[1] | YU Wenduan, GAO Yuqiao, ZAN Ling, MA Xiaodong, YU Qilin, LI Zhipeng, ZHANG Zhihuan. Distribution of oil bearing and shale oil-rich strata in the second member of Funing Formation in Qintong Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 688-698. |
[2] | WANG Xinqian, YU Wenduan, MA Xiaodong, ZHOU Tao, TAI Hao, CUI Qinyu, DENG Kong, LU Yongchao, LIU Zhanhong. Identification and application of shale lithofacies based on conventional logging curves: A case study of the second member of Funing Formation in Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 699-706. |
[3] | ZHANG Fei, LI Qiuzheng, JIANG Aming, DENG Ci. Application of shale oil 2D NMR logging evaluation in Huazhuang area of Gaoyou Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 707-713. |
[4] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[5] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[6] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[7] | WANG Weiheng, GUO Xin, ZHANG Bin, XIA Weiwei. Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 771-778. |
[8] | DUAN Hongliang,SHEN Tingshan,SUN Jing,HONG Yafei,LI Sichen,LU Xianrong,ZHANG Zhengyang. Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 333-342. |
[9] | WANG Xin,HAN Jianqiang,ZAN Ling,LI Xiaolong,PENG Xingping. Logging evaluation of shale oil in the second member of Funing Formation of Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 364-372. |
[10] | ZANG Suhua,JING Xiaoming,LIU Zhihua,YIN Yanling. Geological conditions for shale oil formation in the fourth member of Funing Formation of Eocene series in Jintan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 425-434. |
[11] | GUAN Qianqian,JIANG Long,CHENG Ziyan,ZHANG Diandong,WANG Yunhe,ZHANG Fan. A new method of shale oil facies element logging evaluation and its application in Dongying Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 435-445. |
[12] | XU Guochen,DU Juan,ZHU Mingchen. Practice and understanding of water huff-n-puff in shale oil of Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 256-266. |
[13] | GUO Zhidong, KANG Yili, WANG Yubin, GU Linjiao, YOU Lijun, CHEN Mingjun, YAN Maoling. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150. |
[14] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[15] | ZHAO Kun,LI Zeyang,LIU Juanli,HU Ke,JIANG Ranran,WANG Weixiang,LIU Xiuzhen. Parameter optimization and field practice of CO2 pre-fracturing process in Jimsar shale oil block [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 83-90. |
|