Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (1): 64-72.doi: 10.13809/j.cnki.cn32-1825/te.2025.01.008
• Oil and Gas Exploration • Previous Articles Next Articles
ZHANG Zhang1(), MENG Peng1, YANG Wei1, ZHANG Xiaolong1, HUANG Qi2, WANG Haoran2
Received:
2024-06-25
Online:
2025-01-26
Published:
2025-02-26
CLC Number:
ZHANG Zhang,MENG Peng,YANG Wei, et al. Characterization of braided river reservoir architecture based on seismic attribute stacking ensemble learning: A case study of the C-2 oilfield in the Bohai Bay Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 64-72.
Table 1
Correlation analysis between seismic attributes and P-wave impedance"
参数 | 90°相移 | RMS 振幅 | 甜点 属性 | 振幅 包络 | 瞬时 频率 | 衰减 | 纵波 阻抗 |
---|---|---|---|---|---|---|---|
90°相移 | 1.00 | 0.87 | 0.88 | 0.75 | 0.24 | 0.08 | 0.77 |
RMS振幅 | 0.87 | 1.00 | 0.97 | 0.96 | 0.13 | 0.08 | 0.70 |
甜点属性 | 0.88 | 0.97 | 1.00 | 0.92 | 0.35 | 0.10 | 0.68 |
振幅包络 | 0.75 | 0.96 | 0.92 | 1.00 | 0.12 | 0.08 | 0.58 |
瞬时频率 | 0.24 | 0.13 | 0.35 | 0.12 | 1.00 | 0.10 | 0.12 |
衰减 | 0.08 | 0.08 | 0.1 | 0.08 | 0.1 | 1.00 | 0.07 |
纵波阻抗 | 0.77 | 0.70 | 0.68 | 0.58 | 0.12 | 0.07 | 1.00 |
[1] | 李洪辉, 岳大力, 李伟, 等. 基于分频智能反演的曲流河点坝与废弃河道识别[J]. 石油地球物理勘探, 2023, 58(2): 358-368. |
LI Honghui, YUE Dali, LI Wei, et al. Identification of point bar and abandoned channel of meandering river by spectral decomposition inversion based on machine learning[J]. Oil Geophysical Prospecting, 2023, 58(2): 358-368. | |
[2] | 赵鹏飞, 刘财, 冯晅, 等. 基于神经网络的随机地震反演方法[J]. 地球物理学报, 2019, 62(3): 1172-1180. |
ZHAO Pengfei, LIU Cai, FENG Xuan, et al. Stochastic seismic inversion based on neural network[J]. Chinese Journal of Geophysics, 2019, 62(3): 1172-1180. | |
[3] | 程冰洁, 徐天吉, 罗诗艺, 等. 基于机器学习的深层页岩有利储集层预测方法及实践[J]. 石油勘探与开发, 2022, 49(5): 1-11. |
CHENG Bingjie, XU Tianji, LUO Shiyi, et al. Method and practice of deep favorable shale reservoir prediction based on machine learning[J]. Petroleum Exploration and Development, 2022, 49(5): 1-11. | |
[4] | 安鹏, 曹丹平, 赵宝银, 等. 基于LSTM循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展, 2019, 34(5): 1849-1858. |
AN Peng, CAO Danping, ZHAO Baoyin, et al. Reservoir physical parameters prediction based on LSTM recurrent neural network[J]. Progress in Geophysics, 2019, 34(5): 1849-1858. | |
[5] | 张国印, 王志章, 林承焰, 等. 基于小波变换和卷积神经网络的地震储层预测方法及应用[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 83-93. |
ZHANG Guoyin, WANG Zhizhang, LIN Chengyan, et al. Seismic reservoir prediction method based on wavelet transform and convolutional neural network and its application[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 83-93. | |
[6] | LI W, YUE D L, WANG W F, et al. Fusing multiple frequency-decomposed seismic attributes with machine learning for thickness prediction and sedimentary facies interpretation in fluvial reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 177: 1087-1102. |
[7] | 张宇航, 时保宏, 张曰静, 等. 机器学习方法在浅层滩坝相薄储层孔隙度预测中的应用: 以准噶尔盆地车排子地区白垩系为例[J]. 沉积学报, 2023, 41(5): 1559-1567. |
ZHANG Yuhang, SHI Baohong, ZHANG Yuejing, et al. Application of Machine Learning for Porosity Estimation of Beach and Bar Sand Bodies in a Lacustrine Basin: A case study of the Lower Cretaceous strata in Chepaizi area, Junggar Basin, NW China[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1559-1567. | |
[8] | 蔡义峰, 熊婷, 姚卫江, 等. 地震多属性分析技术在薄层砂体预测中的应用[J]. 石油地球物理勘探, 2017, 52(增刊2): 140-145. |
CAI Yifeng, XIONG Ting, YAO Weijiang, et al. Thin sandstone prediction with seismic multi-attribute analysis[J]. Oil Geophysical Prospecting, 2017, 52(Suppl. 2): 140-145. | |
[9] | 曲志鹏, 王芳芳, 张云银, 等. 基于关联规则与随机森林的地震多属性砂体厚度预测[J]. 地质科技通报, 2021, 40(3): 211-218. |
QU Zhipeng, WANG Fangfang, ZHANG Yunyin, et al. Thickness prediction of seismic multi-attributes sand based on association rules and random forests[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 211-218. | |
[10] | 史长林, 魏莉, 张剑, 等. 基于机器学习的储层预测方法[J]. 油气地质与采收率, 2022, 29(1): 90-97. |
SHI Changlin, WEI Li, ZHANG Jian, et al. Reservoir prediction method based on machine learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 90-97. | |
[11] | YANG R X, SUN C Y, XU L. Prediction of photovoltaic power generation based on stacking model fusion[J]. Computer System Application, 2020, 29(5): 36-45. |
[12] | 曹志民, 丁璐, 韩建. 基于Stacking集成学习的声波时差测井曲线复原研究[J]. 化工自动化及仪表, 2024, 51(3): 470-476. |
CAO Zhimin, DING Lu, HAN Jian. Research on acoustic moveout logging curves restoration based on stacking ensemble learning[J]. Control and Instruments in Chemical Industry, 2024, 51(3): 470-476. | |
[13] | WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. |
[14] | 钱玉贵. 机器深度学习技术在致密砂岩储层预测中的应用: 以川西坳陷新场须家河组为例[J]. 油气藏评价与开发, 2023, 13(5): 600-607. |
QIAN Yugui. Application of machine deep learning technology in tight sandstones reservoir prediction: A case study of Xujiahe Formation in Xinchang, western Sichuan Depression[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 600-607. | |
[15] | 吴胜和, 岳大力, 刘建民, 等. 地下古河道储层构型的层次建模研究[J]. 中国科学(地球科学), 2008, 38(增刊1): 111-121. |
WU Shenghe, YUE Dali, LIU Jianmin, et al. Hierarchy modeling of subsurface palaeochannel reservoir architecture[J]. Scientia Sinica(Terrae): Earth Sciences, 2008, 38(Suppl. 1): 111-121. | |
[16] | MIALL A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308. |
[17] | MIALL A D. The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology[M]. Berlin:Springer, 1996. |
[18] | 侯东梅, 赵秀娟, 汪巍, 等. 地下曲流河点坝砂体规模定量表征研究[J]. 油气藏评价与开发, 2018, 8(3): 7-11. |
HOU Dongmei, ZHAO Xiujuan, WANG Wei, et al. Quantitative characterization research for point bar sand body of subsurface meandering river environment: Taking Minghua Formation of Bohai C Oilfield as an Instance[J]. Petroleum Reservoir Evaluation and Development, 2018, 8(3): 7-11. | |
[19] | KELLY S. Scaling and hierarchy in braided rivers and their deposits: Examples and implications for reservoir modeling[M]. UK: Blackwell Publishing, 2006. |
[20] | 陈薪凯, 刘景彦, 陈程, 等. 主要构型要素细分下的曲流河单砂体识别[J]. 沉积学报, 2019, 38(1): 205-217. |
CHEN Xinkai, LIU Jingyan, CHEN Cheng, et al. The identification of single sand body in meandering river deposits based on the subdivision of main architecture[J]. Acta Sedimentologica Sinica, 2019, 38(1): 205-217. | |
[21] | 徐中波, 汪利兵, 申春生, 等. 渤海蓬莱19-3 油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107. |
XU Zhongbo, WANG Libing, SHEN Chunsheng, et al. Architecture characterization of meandering river reservoirs of lower Minghuazhen Formation of Neogene in Penglai 19-3 oilfield, Bohai Sea[J]. Lithologic Reservoirs, 2023, 35(5): 100-107. | |
[22] | 权勃, 侯东梅, 牟松茹, 等. 基于水平井信息的辫状河储层构型单元空间展布研究[J]. 中国海上油气, 2020, 32(4): 96-103. |
QUAN Bo, HOU Dongmei, MOU Songru, et al. Study on configuration unit spatial distribution of braided river reservoirs based on horizontal well information[J]. China Offshore Oil and Gas, 2020, 32(4): 96-103. |
[1] | KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932. |
[2] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[3] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[4] | LAI Weirong,YANG Guopeng,SONG Peidong,ZHANG Shunli,WANG Zheng. Application of facies-controlled prestack geostatistical inversion in reservoir prediction: A case study of tight sandstone reservoir in the second member of Xujiahe Formation in western Sichuan Depression, Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 586-592. |
[5] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[6] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[7] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[8] | LUO Hongwen, ZHANG Qin, LI Haitao, XIANG Yuxing, LI Ying, PANG Wei, LIU Chang, YU Hao, WANG Yaning. Influence law of temperature profile for horizontal wells in tight oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 676-685. |
[9] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[10] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[11] | CHEN Meng,XIE Weifeng,ZHANG Yu,YANG Guofeng,LIU Xiangjun. Methods and application for water holdup calculation and flowing image based on array electromagnetic wave instrument in horizontal water-oil wells [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 505-512. |
[12] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[13] | NIE Yunli, GAO Guozhong. Classification of shale gas “sweet spot” based on Random Forest machine learning [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 358-367. |
[14] | YAO Hongsheng,YUN Lu,ZAN Ling,ZHANG Longsheng,QIU Weisheng. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin [J]. Reservoir Evaluation and Development, 2023, 13(2): 141-151. |
[15] | ZHANG Jinhong. Progress in Sinopec shale oil engineering technology [J]. Reservoir Evaluation and Development, 2023, 13(1): 1-8. |
|