Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (6): 1046-1055.doi: 10.13809/j.cnki.cn32-1825/te.2025.06.010
• Oil and Gas Development • Previous Articles Next Articles
YANG Chen(
), PENG Xiaolong(
), ZHU Suyang, WANG Chaowen, GUAN Wenjie, XIANG Dongliu
Received:2024-08-01
Online:2025-10-24
Published:2025-12-26
CLC Number:
YANG Chen,PENG Xiaolong,ZHU Suyang, et al. An oil and gas well production prediction method based on temporal attention and dynamic convolution[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(6): 1046-1055.
Table 2
TADyC model network parameters"
| 网络层 | 滤波器数量 | 卷积核大小 | 作用 | 相关参数 |
|---|---|---|---|---|
| 1 | 128 | 2 | 特征提取 | in_channels =128, out_channels =128, |
| 2 | 64 | 2 | 特征提取 | in_channels =128, out_channels =64, |
| 3 | 32 | 2 | 特征提取 | in_channels =64, out_channels =32, |
| 4 | 32 | 2 | 引入注意力机制 | in_channels =32, out_channels =32, num_heads=4 |
| 5 | 16 | 2 | 引入注意力机制 | in_channels =32, out_channels =16, num_heads=4 |
| 6 | 16 | 3 | 动态卷积层 | in_channels=16, out_channels=16, |
| 7 | 0 | 0 | 全连接层 | in_features=16, out_features=1 |
Table 3
Evaluation indicators for different production prediction models of wells GS1, GS2, GS3, and GS7"
| 模型 | GS1井 | GS2井 | GS3井 | GS7井 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| R2 | R2 | |||||||||
| TADyC | 3.882 8 | 3.949 8 | 7.968 1 | 7.206 9 | 9.358 5 | 9.500 2 | 0.984 9 | 6.978 9 | 6.715 9 | 0.984 6 |
| TCN | 5.093 3 | 5.083 8 | 12.614 3 | 9.962 0 | 8.001 8 | 8.781 6 | 0.974 2 | 9.947 9 | 9.159 0 | 0.961 5 |
| LSTM | 5.955 3 | 5.631 2 | 15.208 3 | 11.784 0 | 9.645 2 | 9.010 7 | 0.979 3 | 20.677 9 | 23.191 8 | 0.909 9 |
| SA-TCN | 4.433 6 | 4.428 4 | 8.726 0 | 7.883 2 | 8.501 1 | 8.398 1 | 0.980 3 | 12.824 9 | 13.531 0 | 0.957 4 |
| SA-LSTM | 5.086 0 | 5.116 9 | 14.925 6 | 9.816 6 | 11.382 4 | 13.733 54 | 0.970 9 | 16.735 9 | 18.221 7 | 0.941 1 |
| [1] | 林魂, 孙新毅, 宋西翔, 等. 基于改进人工神经网络的页岩气井产量预测模型研究[J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
| LIN Hun, SUN Xinyi, SONG Xixiang, et al. A model for shale gas well production prediction based on improved artificial neural network[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473. | |
| [2] | 韩克宁, 王伟, 樊冬艳, 等. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
| HAN Kening, WANG Wei, FAN Dongyan, et al. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. | |
| [3] | MAGNUSSON L V, OLSSON J R, TRAN C T T. Recurrent neural networks for oil well event prediction[J]. IEEE Intelligent Systems, 2023, 38(2): 73-80. |
| [4] | 任燕龙, 谷建伟, 崔文富, 等. 基于改进果蝇算法和长短期记忆神经网络的油田产量预测模型[J]. 科学技术与工程, 2020, 20(18): 7245-7251. |
| REN Yanlong, GU Jianwei, CUI Wenfu, et al. Oilfield production prediction model based on improved fruit fly algorithm and long-short term memory neural network[J]. Science Technology and Engineering, 2020, 20(18): 7245-7251. | |
| [5] | LU W J, MA L, CHEN H, et al. A clinical prediction model in health time series data based on long short-term memory network optimized by fruit fly optimization algorithm[J]. IEEE Access, 2020, 8: 136014-136023. |
| [6] | ABDULLAYEVA F, IMAMVERDIYEV Y. Development of oil production forecasting method based on deep learning[J]. Statistics, Optimization & Information Computing, 2019, 7(4): 826-839. |
| [7] | QIAO Y D, PENG J, GE L, et al. Application of PSO LS-SVM forecasting model in oil and gas production forecast[C]//2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing. Oxford, United Kingdom, 26-28 July, 2017. |
| [8] | 白薷, 王世玉, 张璐, 等. 基于MAE神经网络的测井曲线地层自动识别方法[J]. 天然气勘探与开发, 2024, 47(4): 63-71. |
| BAI Ru, WANG Shiyu, ZHANG Lu, et al. An automatic identifying method for strata via logging curves based on MAE neural network[J]. Natural Gas Exploration and Development, 2024, 47(4): 63-71. | |
| [9] | XUE L L, YUE T, XIONG Y F, et al. A data-driven shale gas production forecasting method based on the multi-objective random forest regression(Article)[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107801. |
| [10] | QIN X Z, HU X H, LIU H, et al. A combined gated recurrent unit and multi-layer perception neural network model for predicting shale gas production[J]. Processes, 2023, 11(3): 806. |
| [11] | 周道勇, 汪小平, 张娜, 等. 基于机器学习的气藏相对渗透率曲线确定方法[J]. 天然气勘探与开发, 2024, 47(4): 89-98. |
| ZHOU Daoyong, WANG Xiaoping, ZHANG Na, et al. Determine relative permeability curves for gas reservoirs based on machine learning[J]. Natural Gas Exploration and Development, 2024, 47(4): 89-98. | |
| [12] | 纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复[J]. 中国电机工程学报, 2022, 42(4): 1514-1523. |
| JI Deyang, JIN Feng, DONG Lei, et al. Data repairing of photovoltaic power plant based on Pearson correlation coefficient[J]. Proceedings of the CSEE, 2022, 42(4): 1514-1523. | |
| [13] | GUO C, KANG X M, XIONG J P, et al. A new time series forecasting model based on complete ensemble empirical mode decomposition with adaptive noise and temporal convolutional network[J]. Neural Processing Letters, 2023, 55(4): 4397-4417. |
| [14] | 张蕾, 窦宏恩, 王天智, 等. 基于集成时域卷积神经网络模型的水驱油田单井产量预测方法[J]. 石油勘探与开发, 2022, 49(5): 996-1004. |
| ZHANG Lei, DOU Hongen, WANG Tianzhi, et al. A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model[J]. Petroleum Exploration and Development, 2022, 49(5): 996-1004. | |
| [15] | 王炼红, 罗志辉, 林飞鹏, 等. 采用多头注意力机制的C&RM-MAKT预测算法[J]. 电子学报, 2023, 51(5): 1215-1222. |
| WANG Lianhong, LUO Zhihui, LIN Feipeng, et al. C & RM-MAKT prediction algorithm using multi-head attention mechanism[J]. Acta Electronica Sinica, 2023, 51(5): 1215-1222. | |
| [16] | YU Kun, QIN Xizhong, JIA Zhenhong, et al. Cross-attention fusion based spatial-temporal multi-graph convolutional network for traffic flow prediction[J]. Sensors, 2021, 21(24): 8468. |
| [17] | 耿韶松, 李晋国. 基于动态卷积与注意力的多特征融合行人重识别[J]. 计算机工程与设计, 2023, 44(4): 1228-1234. |
| GENG Shaosong, LI Jinguo. Person re-identification based on multi-feature fusion of dynamic convolution and attention[J]. Computer Engineering and Design, 2023, 44(4): 1228-1234. | |
| [18] | QIAN J J, LIN J, BAI D, et al. Omni-dimensional dynamic convolution meets bottleneck transformer: A novel improved high accuracy forest fire smoke detection model[J]. Forests, 2023, 14(4): 838. |
| [19] | 徐睿, 张飞, 蔡珺君, 等. 基于储层发育主控因素的碳酸盐岩储层定量分类评价: 以四川盆地安岳气田台内带灯影组四段气藏为例[J]. 天然气勘探与开发, 2024, 47(6): 62-69. |
| XU Rui, ZHANG Fei, CAI Junjun, et al. Quantitatively classifying and evaluating carbonate reservoirs based on main controls on reservoir development: An example from Dengying 4 Member in the intra-platform zone, Anyue gasfield, Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(6): 62-69. | |
| [20] | 罗炫, 张文彪, 严鸿, 等. 高含水致密凝析气藏稳产技术应用: 以四川盆地安岳气田须家河组气藏为例[J]. 天然气勘探与开发, 2024, 47(1): 83-88. |
| LUO Xuan, ZHANG Wenbiao, YAN Hong, et al. Production-stabilizing technologies for tight condensate gas reservoirs rich in water cut: An example from Xujiahe Formation, Anyue gasfield, Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(1): 83-88. | |
| [21] | 彭越, 张满郎, 李明秋, 等. 基于图像识别技术的裂缝发育程度定量评价新方法: 以安岳气田须二气藏为例[J]. 非常规油气, 2024, 11(1): 12-21. |
| PENG Yue, ZHANG Manlang, LI Mingqiu, et al. A new method for quantitative evaluation of fracture development degree based on image recognition technology: Take the Xu2 gas reservoir in the Anyue gas field as an example[J]. Unconventional Oil & Gas, 2024, 11(1):12-21. | |
| [22] | 严鸿, 商绍芬, 张铭, 等. 安岳气田高石梯区块上震旦统灯四段气藏动态监测及认识[J]. 天然气技术与经济, 2020, 14(4): 5-11. |
| YAN Hong, SHANG Shaofen, ZHANG Ming, et al. Performance monitoring and understandings on gas reservoirs of the Upper Sinian Dengying 4 Member, Gaoshiti block, Anyue gasfield, Sichuan Basin[J]. Natural Gas Technology and Economy, 2020, 14(4): 5-11. | |
| [23] | 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. |
| SHI Jinxiong, ZHAO Xiangyuan, PAN Renfang, et al. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation, central Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 393-405. | |
| [24] | WAN J S, XIA N, YIN Y T, et al. TCD former: A transformer framework for non-stationary time series forecasting based on trend and change-point detection[J]. Neural Networks, 2024, 173: 106196. |
| [1] | SUN Qiufen, QIN Jiazheng, FENG Qiao, QIAO Yu, LIU Yaxin, ZHAO Qiyang, XU Liang, YAN Chun. A machine learning-based method for recovery rate prediction in fractured water-driven gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 834-843. |
| [2] | WANG Shuoshi, JI Qiang, GUO Ping, LIU Huang, WEN Lianhui, XU Ruifeng, WANG Zhouhua, ZHANG Ruixu. Applicability of LARSEN & SKAUGE relative permeability hysteresis model in high-temperature and high-pressure CO2-water alternating injection experiments [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 613-624. |
| [3] | HUI Jian. Study on simulation methods for flow experiments in fracture-cavity reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(4): 704-710. |
| [4] | QIU Xiaoxue, SHI Xuewen, LIAO Maojie, ZHANG Dongjun, GAO Xiang, YANG Yang, ZHONG Guanghai, LIU Peng. Research and application of fracture identification and effectiveness evaluation methods for deep shale reservoirs: A case study in southern Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 40-48. |
| [5] | YUAN Lina, WANG Guangtao, WANG Chengwang, HOU Rui, SUN Feng. Study on influence of bedding on hydraulic fracture propagation morphologies in Jurassic reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 908-917. |
| [6] | HU Wenge, MA Longjie, WANG Yan, BAO Dian, ZHANG Yun. Application and reflections on efficient development of deep oil and gas reservoirs in Tarim Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 519-528. |
| [7] | DONG Lifei, DONG Wenzhuo, ZHANG Qi, ZHONG Pinzhi, WANG Miao, YU Bo, WEI Haiyu, YANG Chao. Optimal prediction method for CO2 solubility in saline aquifers [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 35-41. |
| [8] | ZHANG Lianfeng, ZHANG Yilin, GUO Huanhuan, LI Hongsheng, LI Junjie, LIANG Limei, LI Wenjing, HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
| [9] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
| [10] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
| [11] | SONG shuling,YANG Erlong,SHA Mingyu. Influencing factors of occurrence state of shale oil based on molecular simulation [J]. Reservoir Evaluation and Development, 2023, 13(1): 31-38. |
| [12] | CHEN Shaoying,WANG Wei,YANG Qingchun,ZHANG Lisong. Sequential coupling thermal-hydro-mechanical model for multiple cluster of fracturing network fracturing in dry hot rock reservoir [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 869-876. |
| [13] | WANG Wei,CHEN Shaoying,YANG Qingchun,LIU Heping,ZHANG Lisong. Single-connected analytical model analysis of stress field response of geothermal reservoirs induced by staged fracturing [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 894-901. |
| [14] | SHANG Xiaofei,WANG Mingchuan,LI Meng,ZHAO Lei. High precision stratigraphic framework modeling for oil and gas reservoirs based on VBM algorithm: A case study of Xu2 Formation in Xinchang tectonic zone, western Sichuan Depression [J]. Reservoir Evaluation and Development, 2022, 12(2): 302-312. |
| [15] | WAN Youwei,LIU Xiangjun,YUAN Fang,XIONG Jian,LI Chao. Physic-chemical and mechanical properties of rocks in Baxigai Formation, Tarim Basin [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 753-759. |
|
||