Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (6): 1104-1111.doi: 10.13809/j.cnki.cn32-1825/te.2024622
• Non-fossil Energy Resources • Previous Articles Next Articles
REN Xiaoqing1,2(
), GAO Xiaorong2(
), WANG Hongliang1, LIU Jian2,3, SUN Caixia2, LU Xingchen2, SUN Zhixue4
Received:2024-12-23
Online:2025-10-24
Published:2025-12-26
CLC Number:
REN Xiaoqing,GAO Xiaorong,WANG Hongliang, et al. Research on multi-scale discrete fracture 3D refined geological modeling and geothermal resource evaluation: A case study of Xianxian County geothermal field, Bohai Bay Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(6): 1104-1111.
Table 1
Modeling parameters of selected geothermal wells in Xianxian County geothermal field"
| 井名 | 井深/m | 利用热储段深度/m | 裂缝类型 | 孔隙度/% | 渗透率/10-3 μm2 | 井温/℃ |
|---|---|---|---|---|---|---|
| ZFJ2 | 2 157.00 | 1 526.00~2 157.00 | Ⅰ类裂缝 | 11.25 | 345.59 | 87 |
| GYY1 | 2 210.00 | 1 568.90~2 210.00 | Ⅲ类裂缝 | 8.79 | 6.07 | 90 |
| GYY2 | 2 114.00 | 1 501.50~2 114.00 | Ⅱ类裂缝 | 9.03 | 63.35 | 80 |
| GYY3 | 2 559.00 | 1 630.00~2 559.00 | Ⅲ类裂缝 | 8.93 | 5.14 | 84 |
| NGC1 | 2 060.00 | 1 459.00~2 060.00 | Ⅱ类裂缝 | 8.16 | 26.44 | 92 |
| NGC2 | 2 187.00 | 1 554.00~2 187.00 | Ⅲ类裂缝 | 8.57 | 11.97 | 93 |
| NGC3 | 2 200.00 | 1 591.00~2 200.00 | Ⅲ类裂缝 | 7.94 | 0.89 | 96 |
| ZFJ1 | 2 080.00 | 1 476.00~2 080.00 | Ⅲ类裂缝 | 6.62 | 3.22 | 88 |
| XFT2 | 2 200.00 | 1 449.62~2 200.00 | Ⅰ类裂缝 | 10.73 | 164.10 | 86 |
Table 2
Multi-scale fracture classification scheme for Wumishan Formation in Xianxian County geothermal field, Bohai Bay Basin"
| 裂缝尺度 | 主要分布特征 | 平面延伸长度 | 缝高 | 开度 | 应力条件 | 主要储渗作用 |
|---|---|---|---|---|---|---|
| Ⅰ级大尺度裂缝 | 断距不明显的小断层或高角度断层型裂缝,无断层核,切割泥岩夹层,可贯穿数套复合砂体 | 数百米级 | 数十米级 | 毫米级 | 局部应力场 | 导水换热 主要通道 |
| Ⅱ级中尺度裂缝 | 在热储体内发育,切割层理层界面,岩性差异及沉积微相控制 | 数十米级—百米级 | 米级—十米级 | 百微米级 | 派生应力场 | 导水换热 主要通道 |
| Ⅲ级小尺度裂缝 | 在单层热储内发育,受层理面、岩溶作用控制,表现为与层面垂直的溶蚀型裂缝 | 米级—十米级 | 分米级—米级 | 数十微米级—百微米级 | 派生应力场 | 增渗换热 |
| [1] | 王君珂. 献县地热田地热控热因素及资源潜力分析[D]. 石家庄: 河北地质大学, 2019. |
| WANG Junke. Analysis on thermal control factors and resource potential of geothermal fields in Xianxian county[D]. Shijiazhuang: Hebei GEO University, 2019. | |
| [2] | 马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7): 1981-1990. |
| MA Feng, WANG Guiling, ZHANG Wei, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7): 1981-1990. | |
| [3] | 丛淑飞, 周宏, 赵艳, 等. 大民屯凹陷沈水501中深层地热田三维地质建模技术研究[J]. 油气藏评价与开发, 2023, 13(6): 741-748. |
| CONG Shufei, ZHOU Hong, ZHAO Yan, et al. 3D geological modeling technology of medium-deep geothermal field in Shenshui 501 geothermal field in Damintun Sag[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 741-748. | |
| [4] | SEYEDRAHIMI-NIARAQ M, DOULATI ARDEJANI F, NOOROLLAHI Y, et al. A three-dimensional numerical model to simulate Iranian NW Sabalan geothermal system[J]. Geothermics, 2019, 77: 42-61. |
| [5] | FLORIDIA G, CACACE M, SCHECK-WENDEROTH M, et al. 3D thermal model of Sicily (Southern Italy) and perspectives for new exploration campaigns for geothermal resources[J]. Global and Planetary Change, 2022, 218: 103976. |
| [6] | ABOUD E, ABRAHAM E, ALQAHTANI F, et al. High potential geothermal areas within the Rahat volcanic field, Saudi Arabia, from gravity data and 3D geological modeling[J]. Acta Geophysica, 2024, 72(3): 1713-1729. |
| [7] | TIAN X M, VOLKOV O, VOSKOV D. An advanced inverse modeling framework for efficient and flexible adjoint-based history matching of geothermal fields[J]. Geothermics, 2024, 116: 102849. |
| [8] | 盖长城, 李洪达, 任路, 等. 地热数值模拟与油藏数值模拟方法对比分析[J]. 油气藏评价与开发, 2024, 14(6): 849-856. |
| GAI Changcheng, LI Hongda, REN Lu, et al. Comparative analysis of geothermal and reservoir numerical simulation methods[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 849-856. | |
| [9] | 朱红光, 易成, 谢和平, 等. 基于立方定律的岩体裂隙非线性流动几何模型[J]. 煤炭学报, 2016, 41(4): 822-828. |
| ZHU Hongguang, YI Cheng, XIE Heping, et al. A new geometric model for non-linear flow in rough-walled fractures based on the cubic law[J]. Journal of China Coal Society, 2016, 41(4): 822-828. | |
| [10] | 许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. |
| XU Guangxiang, ZHANG Yongxing, Qiuling HA. Super-cubic and sub-cubic law of rough fracture seepage and its experiments study[J]. Journal of Hydraulic Engineering, 2003, 34(3): 74-79. | |
| [11] | 高瑜, 叶咸, 夏强. 基于等效连续介质模型的单裂隙渗流数值模拟研究[J]. 地下水, 2016, 38(5): 40-43. |
| GAO Yu, YE Xian, XIA Qiang. Study on numerical simulation of single fracture seepage based on equivalent continuum model[J]. Ground Water, 2016, 38(5): 40-43. | |
| [12] | 单丹丹, 闫铁, 李玮, 等. 单裂隙热储热流耦合数值模拟分析[J]. 当代化工, 2020, 49(4): 716-719. |
| SHAN Dandan, YAN Tie, LI Wei, et al. Numerical simulation and analysis of thermal-hydraulic coupling in a single-fracture thermal reservoir[J]. Contemporary Chemical Industry, 2020, 49(4): 716-719. | |
| [13] | 张树光, 李志建, 徐义洪, 等. 裂隙岩体流-热耦合传热的三维数值模拟分析[J]. 岩土力学, 2011, 32(8): 2507-2511. |
| ZHANG Shuguang, LI Zhijian, XU Yihong, et al. Three-dimensional numerical simulation and analysis of fluid-heat coupling heat-transfer in fractured rock mass[J]. Rock and Soil Mechanics, 2011, 32(8): 2507-2511. | |
| [14] | 柯婷婷, 黄少鹏, 许威, 等. 关中盆地沣西地区地热对井采灌开发模式的数值模拟[J]. 第四纪研究, 2019, 39(5): 1252-1263. |
| KE Tingting, HUANG Shaopeng, XU Wei, et al. Numerical modeling of doublet well system for extracting heat from sandstone geothermal reservoir: A case study of Fengxi area, the Guanzhong Basin, NW China[J]. Quaternary Sciences, 2019, 39(5): 1252-1263. | |
| [15] | 杜广林, 周维垣, 赵吉东. 裂隙介质中的多重裂隙网络渗流模型[J]. 岩石力学与工程学报, 2000, 19(): 1014-1018. |
| DU Guanglin, ZHOU Weiyuan, ZHAO Jidong. Multiple fracture network seepage model for fractured media[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(): 1014-1018. | |
| [16] | 林承焰, 王杨, 杨山, 等. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317. |
| LIN Chengyan, WANG Yang, YANG Shan, et al. 3D modeling of digital core based on X-ray computed tomography[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1): 307-317. | |
| [17] | 黄旭, 沈传波, 杜利, 等. 沧县隆起中段献县凸起和阜城凹陷岩溶型地热资源特征[J]. 现代地质, 2021, 35(4): 997-1008. |
| HUANG Xu, SHEN Chuanbo, DU Li, et al. Geothermal geological characteristics of the Xianxian high and Fucheng Sag in the middle Cangxian uplift, Bohai Bay Basin[J]. Geoscience, 2021, 35(4): 997-1008. | |
| [18] | 王君珂, 朱喜, 刘彦广, 等. 献县地热田地温场特征及控热因素研究[J]. 能源与环保, 2020, 42(1): 113-120. |
| WANG Junke, ZHU Xi, LIU Yanguang, et al. Study on earth temperature field characteristics and heat controlling factors in geothermal field of Xianxian County[J]. China Energy and Environmental Protection, 2020, 42(1): 113-120. | |
| [19] | 汪新伟, 高楠安, 王婷灏, 等. 河北献县地热田地热异常的分布特征及成因机制[J]. 地质学报, 2022, 96(7): 2611-2625. |
| WANG Xinwei, GAO Nan’an, WANG Tinghao, et al. Distribution characteristics and genetic mechanism of the geothermal abnormality in the Xianxian geothermal field, Hebei Province[J]. Acta Geologica Sinica, 2022, 96(7): 2611-2625. | |
| [20] | 张庆福, 黄朝琴, 姚军, 等. 多尺度嵌入式离散裂缝模型模拟方法[J]. 计算力学学报, 2018, 35(4): 507-513. |
| ZHANG Qingfu, HUANG Zhaoqin, YAO Jun, et al. Multiscale embedded discrete fracture modeling method[J]. Chinese Journal of Computational Mechanics, 2018, 35(4): 507-513. | |
| [21] | 朱亚军, 李进步, 陈龙, 等. 苏里格气田大井组立体开发关键技术[J]. 石油学报, 2018, 39(2): 208-215. |
| ZHU Yajun, LI Jinbu, CHEN Long, et al. Key technology of large-well-group stereoscopic development in Sulige gasfield[J]. Acta Petrolei Sinica, 2018, 39(2): 208-215. | |
| [22] | 秦祥熙. 河北省献县隆起蓟县系雾迷山组热储层增产技术研究[D]. 北京: 中国地质大学(北京), 2021. |
| QIN Xiangxi. Study on stimulation technology of thermal reservoir of wumishan formation of Jixian system in Xianxian uplift, Hebei Province[D]. Beijing: China University of Geosciences, 2021. | |
| [23] | 郎晓玲, 郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版), 2013, 49(6): 964-972. |
| LANG Xiaoling, GUO Zhaojie. Fractured reservoir modeling method based on discrete fracture network model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 964-972. | |
| [24] | 乔辉, 张永贵, 聂海宽, 等. 页岩储层多尺度天然裂缝表征与三维地质建模: 以四川盆地平桥构造带五峰组-龙马溪组页岩为例[J]. 地学前缘, 2024, 31(5): 89-102. |
| QIAO Hui, ZHANG Yonggui, NIE Haikuan, et al. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin[J]. Earth Science Frontiers, 2024, 31(5): 89-102. | |
| [25] | 李红波. 哈得逊东河砂岩储层构型模式对剩余油分布的影响研究[D]. 成都: 成都理工大学, 2012. |
| LI Hongbo. The influence of reservoir architecture model in Hudson Donghe sandstone reservoir to the remaining oil distribution patterns[D]. Chengdu: Chengdu University of Technology, 2012. | |
| [26] | 张瑾, 张凤奇, 邹彦荣, 等. 地热水溶型和天然气伴生型氦气来源特征对比: 以渭河盆地和鄂尔多斯盆地北部为例[J]. 油气藏评价与开发, 2025, 15(3): 463-470. |
| ZHANG Jin, ZHANG Fengqi, ZOU Yanrong, et al. Comparison of helium source characteristics between geothermal water-dissolved type and natural gas-associated type: A case study of Weihe Basin and northern Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 463-470. | |
| [27] | 刘健, 曹强, 任小庆, 等. 基于水—热—化耦合数值模拟的地热田开发方案优化设计: 以河北雄安新区岩溶热储为例[J]. 石油实验地质, 2025, 47(2): 406-416. |
| LIU Jian, CAO Qiang, REN Xiaoqing, et al. Optimization design of geothermal field development schemes based on hydraulic, thermal and chemical coupled numerical simulation: A case study of karst thermal reservoir in Xiong’an New Area, Hebei Province[J]. Petroleum Geology & Experiment, 2025, 47(2): 406-416. | |
| [28] | 李红岩, 高小荣, 任小庆, 等. 雄安新区三维地热地质模型方法研究[J]. 地质与资源, 2024, 33(2): 222-229. |
| LI Hongyan, GAO Xiaorong, REN Xiaoqing, et al. 3d geothermal geological modeling method of Xiong’an new area[J]. Geology and Resources, 2024, 33(2): 222-229. | |
| [29] | 孙致学, 姜传胤, 张凯, 等. 基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 79-87. |
| SUN Zhixue, JIANG Chuanyin, ZHANG Kai, et al. Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 79-87. |
| [1] | ZHU Zhaoqun, WU Fuzhu, BIAN Kai, JIANG Feijun, ZHAO Cunliang, LI Dan, SHI Shouqiao. Geological characteristics and potential evaluation of medium-deep geothermal resources in Changsha Basin, Hunan Province [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 900-911. |
| [2] | LIANG Yukai, ZHENG Hua’an, ZENG Qianyi, SONG Jifeng, TIAN Zhongyuan, JIANG Shu. Geothermal resource evaluation of X gasfield in Yinggehai Basin based on geothermal modeling [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 891-899. |
| [3] | SHU Qinglin, WANG Yanan, HAN Zhiying, YAO Xiutian, XIA Jian, CHEN Yumao, LI Weizhong. Strategies and methods of 3D geological multi-level modeling for oilfields: A case study of an integrated oilfield, Gudao Oilfield, in Bohaiwan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 779-787. |
| [4] | CHENG Hai, ZHANG Yiqun, WANG Yin, LIU Chao. Progress and understanding on geology-drilling engineering-mechanics coupling mechanism of ultra-deep directional wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 593-599. |
| [5] | MA Daixin, REN Xianjun, ZHAO Mifu, HAN Jiaoyan, LIU Yuhu. Theories, technologies and practices of exploration and development of volcanic gas reservoirs: A case study of Cretaceous volcanic rocks in Songnan fault depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 167-175. |
| [6] | SHANG Xiaofei,WANG Mingchuan,LI Meng,ZHAO Lei. High precision stratigraphic framework modeling for oil and gas reservoirs based on VBM algorithm: A case study of Xu2 Formation in Xinchang tectonic zone, western Sichuan Depression [J]. Reservoir Evaluation and Development, 2022, 12(2): 302-312. |
| [7] | ZHANG Li’an,WANG Shaopeng,ZHANG Lan,WU Chunxin,YUAN Xun. Analysis on geological characteristics of fractured carbonate reservoir in buried-hill by geological modeling [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 688-693. |
| [8] | Yang Yong,Li Heng,Yang Duo,Du Shuangjun,Peng Jie,Chen Kun. Forward simulation of response characteristics of the array lateral logging in drilling process of fault [J]. Reservoir Evaluation and Development, 2019, 9(2): 50-55. |
|
||