Reservoir Evaluation and Development ›› 2020, Vol. 10 ›› Issue (6): 24-32.doi: 10.13809/j.cnki.cn32-1825/te.2020.06.004
• Methodological and Theory • Previous Articles Next Articles
LI Huabing1(),LI Jianting2,LI Wenhong3,HU Jun1,YUAN Guowei3,LIANG Yan4,5,ZHANG Xinmin1,4,GUO Yongjun1,4,5(
)
Received:
2020-11-03
Online:
2021-01-07
Published:
2020-12-26
Contact:
GUO Yongjun
E-mail:gyfzlhb@126.com;gyfzgyj@126.com
CLC Number:
Huabing LI,Jianting LI,Wenhong LI, et al. Synthesis of associative polymer for flooding in low permeability reservoir and its reservoir adaptability[J]. Reservoir Evaluation and Development, 2020, 10(6): 24-32.
Table 3
Injectivity measurement results of different polymers at a permeability of 50×10-3 μm2"
聚合物 | 气测渗透率/10-3 μm2 | 水测渗透率/10-3 μm2 | 孔隙度/ % | 初始黏度/ (mPa·s) | 黏度保留率/ % | 压力平稳时注聚量(PV) | 阻力 系数 | 残余阻力 系数 |
---|---|---|---|---|---|---|---|---|
HAWSP-950 | 50 | 10.9 | 11.3 | 37.3 | 60.2 | 10.6 | 84.0 | 34.0 |
HAWSP-850 | 50 | 11.3 | 11.9 | 33.4 | 84.2 | 4.8 | 41.8 | 12.8 |
HAWSP-750 | 50 | 11.8 | 12.5 | 31.3 | 88.5 | 2.6 | 17.9 | 1.4 |
HPAM-1500 | 50 | 10.2 | 12.1 | 29.3 | 73.9 | 4.2 | 30.3 | 4.3 |
Table 5
Dynamic response of injection wells before and after associative polymer injection"
序号 | 井号 | 注缔合聚合物前 | 注缔合聚合物后 | 变化 | |||||
---|---|---|---|---|---|---|---|---|---|
时间 | 油压/MPa | 日注水量/m3 | 时间 | 油压/MPa | 日注水量/ m3 | 油压/MPa | 日注水量/ m3 | ||
1 | M-H4-1 | 201906 | 18.2 | 25.7 | 202004 | 18.0 | 26 | -0.2 | 0.3 |
2 | M-H4-2 | 201906 | 18.4 | 21.4 | 202004 | 18.5 | 31 | 0.1 | 9.6 |
3 | M-H4-3 | 201906 | 18.8 | 18.3 | 202004 | 18.2 | 25 | -0.6 | 6.7 |
4 | M-H6-1 | 201906 | 17.0 | 23.2 | 202004 | 15.6 | 30 | -1.4 | 6.8 |
5 | M-H6-2 | 201906 | 16.4 | 29.3 | 202004 | 16.5 | 32 | 0.1 | 2.7 |
6 | M-H6-3 | 201906 | 17.8 | 21.8 | 202004 | 16.6 | 25 | -1.2 | 3.2 |
7 | M-H8-2 | 201906 | 19.8 | 26.5 | 202004 | 18.6 | 25 | -1.2 | -1.5 |
8 | MJ-15-10 | 201906 | 19.1 | 20.3 | 202004 | 17.4 | 22 | -1.7 | 1.7 |
Table 6
Dynamic response of production wells before and after associative polymer injection"
井号 | 注缔合聚合物前 | 注缔合聚合物后 | 2019年6月 增油量/t | 2020年4月 增油量/t | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
产液量/(m3·d-1) | 产油量/(t·d-1) | 含水率/% | 产液量/(m3·d-1) | 产油量/(t·d-1) | 含水率/% | |||||||
M-H5-1 | 4.73 | 0.43 | 89.2 | 26.77 | 1.40 | 93.8 | 242.0 | 546.3 | ||||
M-H5-2 | 16.45 | 0.63 | 95.5 | 24.43 | 1.32 | 93.7 | 119.0 | 289.8 | ||||
MJ-H5-3 | 18.91 | 0.38 | 97.6 | 16.40 | 1.10 | 93.5 | 57.2 | 128.5 | ||||
M-H9-3 | 16.30 | 0.61 | 95.6 | 28.93 | 1.50 | 93.9 | 226.0 | 312.1 | ||||
MJ-13-8 | 10.86 | 1.16 | 87.5 | 14.16 | 2.77 | 77.0 | 437.0 | 807.1 | ||||
M-H3-4 | 15.06 | 0.26 | 97.9 | 17.95 | 1.08 | 92.9 | 281.9 | 489.1 | ||||
MJ-103 | 16.43 | 0.53 | 96.2 | 16.70 | 1.00 | 94.1 | 43.6 | 101.9 | ||||
合计 | 1 406.6 | 2 674.9 |
[1] | 孙龙德, 伍晓林, 周万富, 等. 大庆油田化学驱提高采收率技术[J]. 石油勘探与开发, 2018,45(4):636-645. |
SUN L D, WU X L, ZHOU W F, et al. Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2018,45(4):636-645. | |
[2] | 胡小燕, 王旭, 张丽君, 等. 梳型聚合物MP488抗温抗盐机理分析[J]. 精细石油化工进展, 2015,16(6):32-35. |
HU X Y, WANG X, ZHANG L J, et al. Analysis on heat resistant and salt tolerant mechanism of comb shaped polymer MP488[J]. Advances in Fine Petrochemicals, 2015,16(6):32-35. | |
[3] | 李欣, 谢彬强, 赵林. 新型耐温抗盐聚合物增黏剂的制备及评价[J]. 石油化工, 2018,47(6):595-599. |
LI X, XIE B Q, ZHAO L. Synjournal and evaluation of new heat-resistant and salt-tolerant polymer viscosifier[J]. Petrochemical Technology, 2018,47(6):595-599. | |
[4] | 刘阳阳, 黄文章, 吴柯颖, 等. 耐温抗盐型丙烯酰胺类聚合物的研究进展[J]. 石油与天然气化工, 2015,44(3):99-103. |
LIU Y Y, HUANG W Z, WU K Y, et al. Research progress of heat-resistance and salt-tolerant acylamide-based copolymer[J]. Chemical Engineering of Oil and Gas, 2015,44(3):99-103. | |
[5] | 闵敬丽. 聚丙烯酰胺类耐温抗盐聚合物的合成及其性能研究[D]. 济南:山东大学, 2017. |
MIN J L. Study on synthesis and properties of temperature resistance and salt tolerance polyacylamide copolymer[D]. Jinan: Shandong University, 2017. | |
[6] | 万刚, 马超, 赵林. 三次采油用耐温抗盐聚合物的性能评价[J]. 广东化工, 2015,42(16):271-274. |
WAN G, MA C, ZHAO L. Performance evaluation of the temperature and salt sensitive polymer for tertiary oil recovery[J]. Guangdong Chemical Industry, 2015,42(16):271-274. | |
[7] | 王斌, 王敏, 施文, 等. 耐温抗盐聚合物适应油藏渗透率界限实验研究[J]. 精细石油化工进展, 2017,18(2):1-4. |
WANG B, WANG M, SHI W, et al. Experimental study on reservoir permeability limit of temperature resistant and salt resistant polymer[J]. Advances in Fine Petrochemicals, 2017,18(2):1-4. | |
[8] | GUO Y J, LIANG Y, CAO M, et al. Flow behavior and viscous-oil-microdisplacement characteristics of hydrophobically modified partially hydrolyzed polyacrylamide in a repeatable quantitative visualization micromodel[J]. SPE Journal, 2017,22(5):1448-1466. |
[9] | 何相洋. 高温,高矿化度油藏的聚合物驱油剂性能评价[D]. 大庆:东北石油大学, 2015. |
HE X Y. The performance evaluation of polymer displacement agent that suits for high temperature and high salinity reservoir[D]. Daqing: Northeast Petroleum University, 2015. | |
[10] | 谢坤. 疏水缔合聚合物渤海油藏适应性实验研究[D]. 大庆:东北石油大学, 2016. |
XIE K. Experimental study on applicability between hydrophobically associating polymer and Bohai Reservoir[D]. Daqing: Northeast Petroleum University, 2016. | |
[11] | 梁守成, 吕鑫, 梁丹, 等. 聚合物微球粒径与岩芯孔喉的匹配关系研究[J]. 西南石油大学学报(自然科学版), 2016,38(1):140-145. |
LIANG S C, LYU X, LIANG D, et al. A study on matching relationship of polymer microsphere size[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016,38(1):140-145. | |
[12] | 刘刚, 侯吉瑞, 邱首鹏, 等. 聚合物分子尺寸与砾岩油藏孔喉匹配关系[J]. 断块油气田, 2014,21(6):771-774. |
LIU G, HOU J R, QIU S P, et al. Matching relationship between polymer molecular size and pore throat of conglomerate reservoir[J]. Fault-Block Oil & Gas Field, 2014,21(6):771-774. | |
[13] | 彭晓娟. 聚合物与油层匹配性及注入方式研究[D]. 长春:吉林大学, 2013. |
PENG X J. Study on matching polymer with reservoir and injection way[D]. Changchun: Jilin University, 2013. | |
[14] | 贾玉琴, 杨海恩, 张涛, 等. 低渗透油藏聚合物微球驱适应性分析及油藏筛选[J]. 辽宁石油化工大学学报, 2017,37(1):38-40. |
JIA Y Q, YANG H E, ZHANG T, et al. Adaptability analysis of polymer microsphere flooding in low permeability reservoir and reservoir selection[J]. Journal of Liaoning Shihua University, 2017,37(1):38-40. | |
[15] | 于海生, 陈斌. 低渗透油藏增产增注工艺技术研究[J]. 化工管理, 2014(32):242. |
YU H S, CHEN B. Research on technology of increasing production and injection in low permeability reservoir[J]. Chemical Management, 2014(32):242. | |
[16] | 于馥玮, 苏航. 关于低渗透油藏化学驱的思考[J]. 化学工程与装备, 2015(7):71-72. |
YU F W, SU H. Thinking about chemical flooding in low permeability reservoir[J]. Chemical Engineering & Equipment, 2015(7):71-72. | |
[17] | GHOSH P, ZEPEDA A, BERNAL G, et al. Potential of associative polymers as mobility control agents in low permeability carbonates[C]// paper SPE-195955-MS presented at the SPE Annual Technical Conference and Exhibition, 30 September-2 October, 2019, Calgary, Alberta, Canada. |
[18] | GHOSH P, ZEPEDA A, BERNAL G, et al. Transport of associative polymers in low-permeability carbonates[J]. Transport in Porous Media, 2020,133(2):251-270. |
[19] | 代磊阳. AM/AMPS/DM-16疏水缔合聚合物压裂液稠化剂合成及性能评价[D]. 成都:西南石油大学, 2015. |
DAI L Y. Synthesis and performance evaluation of hydrophobically associating polymer fracturing fluid thickener based AM/AMPS/DM-16 copolymer[D]. Chengdu: Southwest Petroleum University, 2015. | |
[20] |
LIANG Y, GUO Y J, YANG X S, et al. Insights on the interaction between sodium dodecyl sulfate and partially hydrolyzed microblock hydrophobically associating polyacrylamides in different polymer concentration regimes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,572:152-166.
doi: 10.1016/j.colsurfa.2019.03.068 |
[21] | YANG B, MAO J C, ZHAO J Z, et al. Improving the thermal stability of hydrophobic associative polymer aqueous solution using a “triple-protection” strategy[J]. Polymers, 2019,11(6):949. |
[1] | MA Xiaoli, BI Yongbin, JIANG Mingjie, LI Dan, GU Xiao. Characteristics of water phase permeability variation in medium-low permeability oil reservoirs during high multiple waterflooding [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 103-109. |
[2] | MIN Chao,LI Yingjun,LI Xiaogang,HUA Qing,ZHANG Na. Application of intuitive fuzzy MABAC method in optimizing favorable areas of low permeability carbonate gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 577-585. |
[3] | LI Zhongchao, QI Guixue, LUO Bobo, XU Xun, CHEN Hua. Gas flooding adaptability of deep low permeability condensate gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 324-332. |
[4] | TANG Yong, TANG Kai, XIA Guang, XU Di. Retrograde condensation pollution and removal method of BZ19-6 low permeability reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 102-107. |
[5] | SUN Yili. Mechanism of CO2 injection to improve the water injection capacity of low permeability reservoir in Shuanghe Oilfield in Henan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 55-63. |
[6] | CHEN Minfeng,QIN Lifeng,ZHAO Kang,WANG Yiwen. Effective injection-production well spacing in pressure-sensitive reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 855-862. |
[7] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[8] | REN Hongda, DONG Jingfeng, GAO Jing, LIU Kaixin, ZHANG Jingchun, YIN Shuli. Field test of self-suspending proppant at Mahu sandstone reservoir in Xinjiang Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 513-518. |
[9] | LU Bi,HU Chunfeng,MA Jun. Influencing factors and countermeasures of inter-well interference of fracturing horizontal wells in Nanchuan shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 330-339. |
[10] | LIAO Songlin,XIA Yang,CUI Yinan,LIU Fangzhi,CAO Shengjiang,TANG Yong. Variation of crude oil properties with multi-cycle CO2 huff-n-puff of horizontal wells in ultra-low permeability reservoir [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 784-793. |
[11] | GUO Deming,PAN Yi,SUN Yang,CHAO Zhongtang,LI Xiaonan,CHENG Shisheng. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802. |
[12] | ZHAO Baoyin,ZHANG Ming. Application of facies-controlled prestack geostatistical inversion method in high quality reservoir prediction of low permeability reservoir: A case study of V Oil Formation of Es33 in Block A [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 666-676. |
[13] | FAN Lingling. Relation between macro-heterogeneity of reservoir and gas reservoir types of He-1 Member in eastern Hangjinqi [J]. Reservoir Evaluation and Development, 2022, 12(2): 274-284. |
[14] | JI Bingyu,HE Yingfu. Practice and understanding about CO2 flooding in low permeability oil reservoirs by Sinopec [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 805-811. |
[15] | CHEN Shijie,PAN Yi,SUN Lei,SI Yong,LIANG Fei,GAO Li. Mechanism of enhanced oil recovery by CO2 combination flooding in low permeability and high pour-point reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 823-830. |
|