Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (2): 135-145.doi: 10.13809/j.cnki.cn32-1825/te.2021.02.001
• Expert Forum • Next Articles
HE Zhiliang1,2,3(),NIE Haikuan1,2,4,JIANG Tingxue1,5
Received:
2021-01-12
Online:
2021-04-30
Published:
2021-04-26
CLC Number:
Zhiliang HE,Haikuan NIE,Tingxue JIANG. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 135-145.
Table 1
Comparison of fracturing parameters of deep shale gas reservoirs in China and abroad (According to references [26-28])"
压裂工艺参数 | 国外 | 国内 |
---|---|---|
分段分簇 | 单段3~10簇 | 单段2~6簇 |
射孔参数 | 孔径14 mm以上 | 孔径9.5 mm、10.5 mm、12.7 mm |
压裂模式 | 预处理酸+线性胶+滑溜水+冻胶 | 预处理酸+胶液+滑溜水+胶液 |
压裂液 | 滑溜水(1~3 mPa·s)和冻胶 | 滑溜水(9~12 mPa·s)和聚合物 |
支撑剂 | 100目、40/70目、30/50目、20/40目 | 100目、40/70目、30/50目 |
加砂方式 | 低砂比连续加砂 | 段塞加砂 |
单段压裂规模(m3) | 1 500~2 900 | 1 600~3 100 |
单段支撑剂规模(m3) | 70~110 | 50~80 |
综合砂液比(%) | 3~6 | 1.1~4.1 |
施工排量(m3/min) | 11~14 | 12~18 |
施工压力(MPa) | 70~90 | 90~118 |
Table 2
Comparison of main parameters of deep shale gas reservoir in China and abroad (According to references [2,29-32])"
区块 | 深度 (m) | 优质页岩 厚度(m) | Ro (%) | 孔隙度 (%) | TOC (%) | 硅质含量(%) | 碳酸质 含量(%) | 含气性 (m3/t) | 地层压力系数 | 水平 地应力差 |
---|---|---|---|---|---|---|---|---|---|---|
焦石坝 | 3 880~4 011 | 30.5~49.5 | 2.42~2.80 | 3.12~3.33 | 2.84~2.93 | 47.7~69.2 | 10.1~12.3 | 3.33~4.52 | 1.38~1.57 | 7.4~14.0 |
丁山 | 3 936~4 269 | 39.0~35.0 | 1.85~2.23 | 3.77~4.60 | 2.85~3.72 | 41.1~52.3 | 11.0~15.2 | 5.06~6.15 | 1.25~1.70 | 13.0~24.0 |
南川 | 4 382~4 411 | 29.0 | 2.53 | 4.12 | 3.17 | 46.2 | 9.7 | 4.10 | 1.52 | 22.0 |
东溪 | 4 197~4 227 | 30.5 | 4.60 | 3.49 | 52.3 | 11.0 | 5.06 | 1.40~1.65 | 17.0 | |
Eagle Ford | 1 200~4 200 | 20.0~90.0 | 0.60~1.80 | 4.50 (3.00~7.00) | 4.50 (3.00~7.00) | 14.0~35.0 | 20.0~50.0 | 6.00 | 1.35~1.80 | 4.0 |
Haynesville | 3 658 | 45.0 | 1.20~3.00 | 10.00 (8.00~12.00) | 4.00 (3.00~5.00) | 15.0~20.0 | 40.0~90.0 | 12.00 | 1.90 | <10.0 |
Cana Woodford | 4 115 | 50.0 | 6.50 (5.00~8.00) | 9.00 (6.00~12.00) | 48.0~74.0 | <20.0 | 1.58 | 5.7 |
Table 3
Current situation of fracturing equipment in China and abroad (According to references [33-35])"
工艺技术 | 国外 | 国内 |
---|---|---|
压裂装备 | ①压裂装备主要为2 300 hp以下拖装柴驱 ②多采用拖装双泵结构,整机功率5 000~7 000 hp | ①国内压裂装备以柴驱为主,已经开发了3000—7000型电动压裂设备 ②压裂装备平均负荷率在60 %以下 |
压裂地面管汇 | 以大通径法兰管线为主的拖链式或围栏式管汇结构 | 由壬式3″三通道、4″两通道结构,管线安装复杂,存在振动、超排现象 |
连续油管作业装备 | ①连续油管作业装备,2″油管长度达到8 000 m ②装备自动化、信息化水平较高,油管现场连接技术成熟 | ①现役连续油管主力装备油管容量最大为2″,长度为6 000 m, ②现场连接焊接技术可靠性和自动化水平有待提高 |
[1] | 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选[M]. 北京: 科学出版社, 2016. |
Department of land and resources oil and gas strategic research center. National survey and evaluation of shale gas potential and selection of favorable areas[M]. Beijing: Science Press, 2016. | |
[2] | 何治亮, 聂海宽, 蒋廷学, 等. 深层页岩气有效开发中的地质问题——以四川盆地及周缘五峰组—龙马溪组为例[J]. 石油学报, 2020,41(4):379-391. |
HE Zhiliang, NIE Haikuan, JIANG Tingxue, et al. Geological problems in the effective development of deep shale gas:a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020,41(4):379-391. | |
[3] | 曹海涛, 詹国卫, 余小群, 等. 深层页岩气井产能的主要影响因素——以四川盆地南部永川区块为例[J]. 天然气工业, 2019,39(S1):118-122. |
CAO Haitao, ZHAN Guowei, YU Xiaoqun, et al. Main factors affecting productivity of deep shale gas wells: A case study of Yongchuan block in southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(S1):118-122. | |
[4] | 杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019,39(11):55-63. |
YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(11):55-63. | |
[5] | 蒋廷学, 卞晓冰, 王海涛, 等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017,37(1):90-96. |
JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017,37(1):90-96. | |
[6] | 蒋廷学, 周健, 张旭, 等. 深层页岩气井裂缝扩展及导流特性研究及展望[J]. 中国科学:物理学力学天文学, 2017,47(11):33-40. |
JIANG Tingxue, ZHOU Jian, ZHANG Xu, et al. Overview and prospect of fracture propagation and conductivity characteristics in deep shale gas wells[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2017,47(11):33-40. | |
[7] | 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018,45(1):161-169. |
MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018,45(1):161-169. | |
[8] | 郭旭升. 四川盆地涪陵平桥页岩气田五峰组——龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019,30(1):1-10. |
GUO Xusheng. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formations in Pingqiao shale gas field in Fuling area, Sichuan Basin[J]. Natural Gas Geoscience, 2019,30(1):1-10. | |
[9] | 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017,28(12):1781-1796. |
ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017,28(12):1781-1796. | |
[10] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574. |
MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45(4):561-574. | |
[11] | 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004,24(7):15-18. |
ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004,24(7):15-18. | |
[12] | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016,23(1):1-10. |
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016,23(1):1-10. | |
[13] | 张水昌, 胡国艺, 米敬奎, 等. 三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J]. 石油学报, 2013,34(S1):41-50. |
ZHANG Shuichang, HU Guoyi, MI Jingkui, et al. Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J]. Acta Petrolei Sinica, 2013,34(S1):41-50. | |
[14] | 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017,28(5):724-733. |
HE Zhiliang, HU Zongquan, NIE Haikuan, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017,28(5):724-733. | |
[15] | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020,49(1):13-35. |
NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020,49(1):13-35. | |
[16] |
琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014,29(4):492-506.
doi: 10.11867/j.issn.1001-8166.2014.04.0492 |
JU Yiwen, BU Hongling, WANG Guochang. Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science, 2014,29(4):492-506.
doi: 10.11867/j.issn.1001-8166.2014.04.0492 |
|
[17] |
聂海宽, 张金川. 页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011,33(3):219-225.
doi: 10.11781/sysydz201103219 |
NIE Haikuan, ZHANG Jinchuan. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011,33(3):219-225.
doi: 10.11781/sysydz201103219 |
|
[18] |
XIAO X M, WEI Q, GAI H F, et al. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China[J]. Petroleum Science, 2015,12(4):573-586.
doi: 10.1007/s12182-015-0057-2 |
[19] | NIE H K, JIN Z J, SUN C X, et al. Organic matter types of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores[J]. Energy & Fuels, 2019,33(9):8076-8100. |
[20] |
HE Z L, NIE H K, ZHAO J H, et al. Types and origin of nanoscale pores and fractures in Wufeng and Longmaxi Shale in Sichuan Basin and its periphery[J]. Journal of Nanoscience and Nanotechnology, 2017,17(9):6626-6633.
doi: 10.1166/jnn.2017.14425 |
[21] | 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014,88(7):1209-1218. |
GUO Xusheng. Rules of two-factor enrichment for marine shale gas in Southern China——Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014,88(7):1209-1218. | |
[22] |
王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015,36(1):1-6.
doi: 10.11743/ogg20150101 |
WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015,36(1):1-6.
doi: 10.11743/ogg20150101 |
|
[23] | 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016,23(2):8-17. |
HE Zhiliang, NIE Haikuan, ZHANG Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016,23(2):8-17. | |
[24] | 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集[J]. 石油学报, 2016,37(5):557-571. |
NIE Haikuan, JIN Zhijun, BIAN Ruikang, et al. The“source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016,37(5):557-571. | |
[25] |
HE Z L, LI S J, NIE H K, et al. The shale gas “sweet window”: “The cracked and unbroken” state of shale and its depth range[J]. Marine and Petroleum Geology, 2019,101:334-342.
doi: 10.1016/j.marpetgeo.2018.11.033 |
[26] | GRIESER B TALLEY C. Post-frac production analysis of horizontal completions in CANA Woodford Shale[C]// paper presented at the SPE Hydraulic Fracturing Technology Conference, February 6-8, 2012, The Woodlands, Texas, USA. |
[27] | FARINAS M, FONSECA E. Hydraulic fracturing simulation case study and post frac analysis in the Haynesville Shale[C]// paper SPE-163847-MS presented at the SPE Hydraulic Fracturing Technology Conference, February 4-6, 2013, The Woodlands, Texas, USA. |
[28] | LOWE T, POTTS M D, WOOD D E. A case history of comprehensive hydraulic fracturing monitoring in the Cana Woodford[C]// paper SPE-166295-MS presented at the SPE Annual Technical Conference and Exhibition, September 30-October 2, 2013, New Orleans, Louisiana, USA. |
[29] |
GENTZIS T. A review of the thermal maturity and hydrocarbon potential of the Mancos and Lewis shales in parts of New Mexico, USA[J]. International Journal of Coal Geology, 2013,113:64-75.
doi: 10.1016/j.coal.2012.09.006 |
[30] |
GENTZIS T. Review of the hydrocarbon potential of the Steele Shale and Niobrara Formation in Wyoming, USA: A major unconventional resource play?[J]. International Journal of Coal Geology, 2016,166:118-127.
doi: 10.1016/j.coal.2016.07.002 |
[31] | 陈作, 曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术, 2016,44(1):6-11. |
CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016,44(1):6-11. | |
[32] | American Association of Petroleum Geologists, Energy Minerals Division. Unconventional Energy Resources: 2017 Review[J]. Natural Resources Research, 2018, https://doi.org/10.1007/s11053-018-9432-1. |
[33] | 彭俊威, 周青, 戴启平, 等. 国内大型压裂装备发展现状及分析[J]. 石油机械, 2016,44(5):82-86. |
PENG Junwei, ZHOU Qing, DAI Qiping, et al. Development status and analysis of domestic large-scale fracturing equipment[J]. China Petroleum Machinery, 2016,44(5):82-86. | |
[34] | 王晓宇. 国外压裂装备与技术新进展[J]. 石油机械, 2016,44(11):72-79. |
WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016,44(11):72-79. | |
[35] | 张增年, 李华川, 郑家伟, 等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺, 2020,43(2):41-44. |
ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technology development prospect of fracturing equipment[J]. Drilling & Production Technology, 2020,43(2):41-44. | |
[36] | 王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组—龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017,44(4):531-539. |
WANG Yuman, WANG Hongkun, ZHANG Chenchen, et al. Fracture pore evaluation of the Upper Ordovician Wufeng to Lower Silurian Longmaxi Formations in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017,44(4):531-539. | |
[37] | 段华, 李荷婷, 代俊清, 等. 深层页岩气水平井“增净压、促缝网、保充填”压裂改造模式——以四川盆地东南部丁山地区为例[J]. 天然气工业, 2019,39(2):66-70. |
DUAN Hua, LI Heting, DAI Junqing, et al. Horizontal well fracturing mode of “increasing net pressure, promoting network fracture and keeping conductivity” for the stimulation of deep shale gas reservoirs: A case study of the Dingshan area in SE Sichuan Basin[J]. Natural Gas Industry, 2019,39(2):66-70. | |
[38] | STEGENT N A, WAGNER A L, MONTES M, et al. SMA technology extends the useful range of nonceramic proppants in the Eagle Ford Shale[C]// paper SPE-136801-MS presented at the Tight Gas Completions Conference, November 2-3, 2010, San Antonio, Texas, USA. |
[39] | ENRIQUEZ-TENORIO O, KNORR A, ZHU D, et al. Relationships between mechanical properties and fracturing conductivity for the Eagle Ford Shale[J]. SPE Production & Operations, 2019,34(2):318-331. |
[40] | 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015,20(4):1-23. |
WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscience-to-production integration ensures effective and efficient South China Marine Shale Gas Development[J]. China Petroleum Exploration, 2015,20(4):1-23. | |
[41] | 鲜成钢. 页岩气地质工程一体化建模及数值模拟:现状、挑战和机遇[J]. 石油科技论坛, 2018,37(5):24-34. |
XIAN Chenggang. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 2018,37(5):24-34. | |
[42] | 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017,22(1):1-5. |
HU Wenrui. Geology-engineering integration—a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017,22(1):1-5. | |
[43] | 刘忠宝, 高波, 张钰莹, 等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发, 2017,44(1):21-31. |
LIU Zhongbao, GAO Bo, ZHANG Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017,44(1):21-31. |
[1] | LIANG Xiaobai, JU Wei. Fault connectivity evaluation based on topological structure analysis: A case study of multi-stage faults of deep shale gas reservoirs in central Luzhou Block, southern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 446-457. |
[2] | YAO Hongsheng, WANG Wei, HE Xipeng, ZHENG Yongwang, NI Zhenyu. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. |
[3] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[4] | ZHANG Jinhong. Progress in Sinopec shale oil engineering technology [J]. Reservoir Evaluation and Development, 2023, 13(1): 1-8. |
[5] | LI Donghui,TIAN Lingyu,NIE Haikuan,PENG Zeyang. Factor analysis and comprehensive evaluation model of shale gas well productivity based on fuzzy analytic hierarchy process: Taking Jiaoshiba shale gas field in Sichuan Basin as an example [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 417-428. |
[6] | LIU Yulin,FAN Lingxiao,FANG Dazhi,PENG Yongmin,ZENG Lianbo,FENG Dongjun. Application of a new source-reservoir classification method in production analysis of shale gas wells in Eastern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 429-436. |
[7] | ZHANG Chenglin,YANG Xuefeng,ZHAO Shengxian,ZHANG Jian,DENG Feiyong,HE Yuanhan,ZHANG Deliang,WANG Gaoxiang,ZHONG Guanghai. Target position optimization for shale reservoirs in Zigong Block of southern Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 496-505. |
[8] | ZHU Huashu,WANG Xiyong,XU Xiaoling,GUO Zhiliang,HUANG Hechun. Extendability limit of engineering drilling in long horizontal section of Weirong deep shale gas [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 506-514. |
[9] | DU Yang,NI Jie,LEI Wei,ZHOU Xingfu,LI Li,BU Tao. Optimum time of tubing installation in deep shale gas wells of Weirong [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 526-533. |
[10] | HE Faqi,XU Bingwei,SHAO Longkan. On philosophy and innovative thinking of oil & gas exploration and development: Commemoration of the first oil well on land in China, Well-Yan1 [J]. Reservoir Evaluation and Development, 2022, 12(2): 265-273. |
[11] | HE Wenyuan,FENG Zihui,ZHANG Jinyou,BAI Yunfeng,FU Xiuli,ZHAO Ying,CHENG Xinyang,GAO Bo,LIU Chang. Characteristics of geological section of Well-GY8HC in Gulong Sag, Northern Songliao Basin [J]. Reservoir Evaluation and Development, 2022, 12(1): 1-9. |
[12] | LIU Shugen, RAN Bo, YE Yuehao, WANG Shiyu, YANG Di, LUO Chao, HAN Yuyue, SONG Jinmin, ZHANG Xuan. Outcrop of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Qilong Village, Xishui, Guizhou [J]. Reservoir Evaluation and Development, 2022, 12(1): 10-28. |
[13] | GAO Yuqiao,LIU Nana,ZHANG Peixian,HE Guisong,GAO Quanfang. Geological characteristic and its implications of shale exploration in Qijiang, Chongqing, China [J]. Reservoir Evaluation and Development, 2022, 12(1): 119-129. |
[14] | DU Wei,PENG Yongmin,LONG Shengxiang,NIE Haikuan,SUN Chuanxiang,YEERHAZI Talihaer. Geological characteristics of shale in Wufeng-Longmaxi Formation of Bayu outcrop in Daozhen, northern Guizhou [J]. Reservoir Evaluation and Development, 2022, 12(1): 130-138. |
[15] | ZHU Tong,ZHANG Zhe,FENG Dongjun,ZHENG Rongcai,WANG Feng,PENG Yongmin. Geological characteristics of mud shale in Da'anzhai section of Fulu Town, Liangping [J]. Reservoir Evaluation and Development, 2022, 12(1): 139-149. |
|