Petroleum Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (4): 586-596.doi: 10.13809/j.cnki.cn32-1825/te.2021.04.015
• Intelligent Evaluation • Previous Articles Next Articles
LI Chang1,2(),SHEN Anjiang1,2,CHANG Shaoying1,2,LIANG Zhengzhong3,LI Zhenlin4,MENG He1
Received:
2020-09-09
Online:
2021-08-19
Published:
2021-08-26
CLC Number:
Chang LI,Anjiang SHEN,Shaoying CHANG, et al. Application and contrast of machine learning in carbonate lithofacies log identification: A case study of Longwangmiao Formation of MX area in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 586-596.
Table 1
Calibration probability percentage of logging facies and core facies %"
SOM法 测井相类型 | 岩心标定概率百分比 | MRGC法 测井相类型 | 岩心标定概率百分比 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
颗粒云岩 | 粉晶云岩 | 泥晶云岩 | 颗粒云岩 | 粉晶云岩 | 泥晶云岩 | ||||||
测井相1 | 86.4 | 13.6 | 0 | 测井相1 | 80.6 | 19.4 | 0 | ||||
测井相2 | 0 | 100.0 | 0 | 测井相2 | 0 | 100.0 | 0 | ||||
测井相3 | 0 | 0 | 100.0 | 测井相3 | 100.0 | 0 | 0 | ||||
测井相4 | 100.0 | 0 | 0 | 测井相4 | 0 | 100.0 | 0 | ||||
测井相5 | 0 | 93.3 | 6.7 | 测井相5 | 84.6 | 15.4 | 0 | ||||
测井相6 | 0 | 100 | 0 | 测井相6 | 0 | 0 | 100.0 | ||||
测井相7 | 95.5 | 0 | 4.5 | 测井相7 | 11.8 | 70.6 | 17.6 | ||||
测井相8 | 16.7 | 83.3 | 0 | 测井相8 | 73.7 | 26.3 | 0 | ||||
测井相9 | 0 | 0 | 100.0 | 测井相9 | 0 | 0 | 100.0 |
Table 3
Lithofacies of core samples(part)"
序号 | 岩相 | 厚度 (m) | 声波时差(AC) (μs/ft) | 自然伽马(GR) (API) | 中子(NPHI) (V/V) | 密度(DEN) (g/cm3) | 深电阻率(RT) (Ω·m) |
---|---|---|---|---|---|---|---|
1 | 颗粒云岩 | 4.25 | 48.24 | 17.71 | 0.082 | 2.77 | 103.59 |
2 | 颗粒云岩 | 5.49 | 47.92 | 19.10 | 0.091 | 2.79 | 51.91 |
3 | 颗粒云岩 | 1.24 | 49.05 | 17.63 | 0.064 | 2.74 | 425.84 |
4 | 颗粒云岩 | 16.99 | 49.35 | 17.60 | 0.052 | 2.73 | 809.46 |
5 | 颗粒云岩 | 5.91 | 50.08 | 18.04 | 0.061 | 2.70 | 595.41 |
6 | 颗粒云岩 | 0.93 | 47.98 | 20.53 | 0.050 | 2.75 | 818.09 |
7 | 颗粒云岩 | 0.81 | 47.46 | 19.45 | 0.041 | 2.83 | 1 649.04 |
8 | 颗粒云岩 | 1.04 | 45.08 | 19.17 | 0.034 | 2.83 | 4 071.69 |
9 | 粉晶云岩 | 1.17 | 43.62 | 32.17 | 0.036 | 2.87 | 1 036.42 |
10 | 粉晶云岩 | 4.75 | 45.91 | 18.58 | 0.070 | 2.81 | 381.87 |
11 | 粉晶云岩 | 1.76 | 45.08 | 28.45 | 0.054 | 2.82 | 777.23 |
12 | 粉晶云岩 | 0.70 | 44.14 | 22.85 | 0.041 | 2.82 | 1 258.25 |
13 | 粉晶云岩 | 0.70 | 44.22 | 26.39 | 0.030 | 2.87 | 13 848.18 |
14 | 粉晶云岩 | 0.58 | 44.06 | 16.49 | 0.035 | 2.83 | 8 054.69 |
15 | 粉晶云岩 | 0.81 | 43.86 | 19.15 | 0.035 | 2.80 | 9 937.23 |
16 | 粉晶云岩 | 0.73 | 48.18 | 18.53 | 0.047 | 2.79 | 506.02 |
17 | 粉晶云岩 | 1.97 | 50.59 | 18.58 | 0.055 | 2.72 | 726.43 |
18 | 粉晶云岩 | 1.85 | 49.47 | 18.28 | 0.064 | 2.72 | 469.56 |
19 | 粉晶云岩 | 2.55 | 47.49 | 19.94 | 0.040 | 2.80 | 2 024.54 |
20 | 粉晶云岩 | 5.56 | 46.51 | 19.49 | 0.041 | 2.81 | 1 858.67 |
21 | 粉晶云岩 | 6.60 | 45.57 | 18.94 | 0.036 | 2.81 | 7 662.91 |
22 | 泥晶云岩 | 2.00 | 46.45 | 25.89 | 0.060 | 2.80 | 210.82 |
23 | 泥晶云岩 | 3.89 | 44.62 | 26.17 | 0.045 | 2.84 | 530.76 |
24 | 泥晶云岩 | 2.66 | 43.65 | 22.57 | 0.032 | 2.86 | 10 060.70 |
25 | 泥晶云岩 | 3.36 | 43.77 | 22.41 | 0.038 | 2.83 | 7 761.66 |
26 | 泥晶云岩 | 4.29 | 43.49 | 20.58 | 0.029 | 2.83 | 12 356.61 |
27 | 泥晶云岩 | 1.85 | 43.64 | 19.02 | 0.027 | 2.86 | 7 996.26 |
28 | 泥晶云岩 | 13.78 | 46.15 | 32.67 | 0.042 | 2.82 | 2 495.68 |
Table 4
Advantages and disadvantages of different identification methods"
方法 | 优缺点 | 应用条件 | 方法关键点 | |||
---|---|---|---|---|---|---|
优点 | 缺点 | 测井资料要求 | 岩心资料要求 | |||
自组织映射神经网络聚类分析(SOM) | 容错性强,稳定性好, 具有自联想性 | 人工经验主导聚类测井相数目,步骤较多 | 至少5项常规测井资料(中子、密度、声波、自然伽马、电阻率) | 少量岩心资料 | 岩相和测井相 对应关系 | |
基于图像多分辨率 聚类分析(MRGC) | 善于解决类域交叉或 重叠较多的问题 | 人工经验主导聚类测井相数目,人为影响因素大,步骤多 | ||||
K最近邻分类算法(KNN) | 善于解决类域交叉或 重叠较多的问题, 无需训练,方法简单 | 样本数量不均衡或较少时,预测偏差大 | 中等数量岩心资料,且每类岩相类型样本数量均衡 | 不同类型样本 数量要均衡 | ||
神经网络方法 (ANN) | 较强容错能力及 自学习自适应能力 | 容易陷入局部极小化问题,对样本数量依赖性强 | 大量岩心样本 资料 | 样本数据量大而且要具有代表性 |
[1] | 沈安江, 赵文智, 胡安平, 等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5):545-554. |
SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5):545-554. | |
[2] | 周进高, 徐春春, 姚根顺, 等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发, 2015, 42(2):158-166. |
ZHOU Jingao, XU Chunchun, YAO Genshun, et al. Genesis and evolution of Lower Cambrian Longwangmiao Formation reservoirs, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(2):158-166. | |
[3] | 司马立强, 陈志强, 王亮, 等. 基于滩控岩溶型白云岩储层分类的渗透率建模方法研究——以川中磨溪—高石梯地区龙王庙组为例[J]. 岩性油气藏, 2017, 29(3):92-102. |
SIMA Liqiang, CHEN Zhiqiang, WANG Liang, et al. Permeability modeling based on the classification of beach-controlled karst dolomite reservoirs:a case from Longwangmiao Formation in Moxi-Gaoshiti area, central Sichuan Basin[J]. Lithologic Reservoirs, 2017, 29(3):92-102. | |
[4] | YE S J, RABLILLER P. A new tool for electro-facies analysis:multi-resolution graph-based clustering [C]// Paper SPWLA-2000-PP presented at the SPWLA 41st Annual Logging Symposium, Dallas, Texas, June 2000. |
[5] | 张振城, 孙建孟, 马建海, 等. 利用测井资料自动识别藻灰岩[J]. 吉林大学学报(地球科学版), 2005, 32(3):382-388. |
ZHANG Zhencheng, SUN Jianmeng, MA Jianhai, et al. Automatic identification of algae limestone with well logging data[J]. Journal of Jilin University(Earth Science Edition), 2005, 32(3):382-388. | |
[6] | AGHCHELOU M, SHAHVAR M B. Lithofacies estimation by multi-resolution graph-based clustering of petrophysical well logs: Case study of South Pars Gas Field of Iran [C]// Paper SPE-162991-MS presented at the Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, August 2012. |
[7] | 于建华. 应用人工神经网络自动识别岩性[J]. 石油地球物理勘探, 1993, 28(1):59-66. |
YU Jianhua. Automatic lithology identification using artficail nervous netwlork[J]. Oil Geophysical Prospecting, 1993, 28(1):59-66. | |
[8] |
ALPANA B, HANS B H. Determination of facies from well logs using modular neural networks[J]. Petroleum Geoscience, 2002, 8:217-228.
doi: 10.1144/petgeo.8.3.217 |
[9] | HONG T, NIALL T, MEDDAUGH W S. Successful carbonate well log facies prediction using an artificial neural network method: Wafra Maastrichtian reservoir, partitioned neutral zone(PNZ), Saudi Arabia and Kuwait [C]// Paper SPE-123988-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 2009. |
[10] | HASSAN M, MOOSA E, ELHAM H A. Application of artificial neural networks for prediction of Sarvak Formation lithofacies based on well log data, Marun oil field, SW Iran[J]. Geopersia, 2015, 5(2):111-123. |
[11] | 桑应宾. 基于K近邻的分类算法研究[D]. 重庆:重庆大学, 2009. |
SANG Yingbin. Research on classification algorithm based on K-nearest neighbor[D]. Chongqing: Chongqing University, 2009. | |
[12] | 周少华, 付略, 梁宝鎏. 基于SOM神经网络的古代青瓷聚类分析[J]. 中国科学E辑, 2008, 38(7):1089-1096. |
ZHOU Shaohua, FU Lue, LIANG Baoliu. Clustering analysis of Ancient Celadon based on SOM neural network[J]. Science in China(Series E), 2008, 38(7):1089-1096. | |
[13] | 付小青, 张爱明. 基于SOM的入侵检测算法的特征选择[J]. 华中科技大学学报(自然科学版), 2007, 35(7):5-7. |
FU Xiaoqing, ZHANG Aiming. Feature selection of SOM-based intrusion detection algorithm[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2007, 35(7):5-7. | |
[14] |
KOHONEN T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43:59-69.
doi: 10.1007/BF00337288 |
[15] |
CHANGA H C, KOPASKA-MERKELB D C, CHEN H C. Identification of lithofacies using Kohonen self-organizing maps[J]. Computers & Geosciences, 2002, 28:223-229.
doi: 10.1016/S0098-3004(01)00067-X |
[16] | STUNDNER M, OBERWINKLER C. Self-Organizing maps for lithofacies identification and permeability prediction [C]// Paper SPE-90720-MS presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, September 2004. |
[17] | 张猛. 地层岩性的多层次自组织自动分类方法研究[D]. 武汉:长江大学, 2018. |
ZHANG Meng. Study on multi-level self-organization automatic classcification method for stratigraphy lithology[D]. Wuhan: Yangtze University, 2018 | |
[18] | 吴进波. MRGC方法在储层分类及渗透率精细评价中的应用[J]. 海洋石油, 2017, 37(1):49-53. |
WU Jinbo. Application of reservoir classification and permeability elaborate evaluation with MRGC method[J]. Offshore Oil, 2017, 37(1):49-53. | |
[19] | 寇莎莎, 魏振军. K-最近邻的改进及其在文本分类中的应用[J]. 河南师范大学学报(自然科学版), 2005, 33(3):134-136. |
KOU Shasha, WEI Zhenjun. Improvement of K nearest neighbors and applications in text classification[J]. Journal of Henan Normal University(Natural Science Edition), 2005, 33(3):134-136. | |
[20] | 孙岩, 吕世聘, 王秀坤, 等. 基于结构学习的KNN分类算法[J]. 计算机科学, 2007, 34(12):184-186. |
SUN Yan, LYU Shiping, WANG Xiukun, et al. K-nearest neighbor algorithm based on learning structure[J]. Computer Science, 2007, 34(12):184-186. | |
[21] | 张涛. 用人工神经网络研究元素与岩浆岩、沉积岩岩性及沉积岩矿物的关系[D]. 西安:西北大学, 2016. |
ZHANG Tao. The relationships between rock elements and the igneous rocks, the lithologic discrimination and mineral identification of sedimentary rocks: A study based on the method of artificial neural network[D]. Xi’an: Northwest University, 2016. | |
[22] | 金民东, 曾伟, 谭秀成, 等. 四川磨溪—高石梯地区龙王庙组滩控岩溶型储集层特征及控制因素[J]. 石油勘探与开发, 2014, 41(6):650-660. |
JIN Mindong, ZENG Wei, TAN Xiucheng, et al. Characteristics and controlling factors of beach-controlled karst reservoirs in Cambrian Longwangmiao Formation[J]. Petroleum Exploration and Development, 2014, 41(6):650-660. | |
[23] | 张建勇, 罗文军, 周进高, 等. 四川盆地安岳特大型气田下寒武统龙王庙组优质储层形成的主控因素[J]. 天然气地球科学, 2015, 26(11):2063-2074. |
ZHANG Jianyong, LUO Wenjun, ZHOU Jingao, et al. Main origins of high quality reservoir of Lower Cambrian Longwangmiao Formation in the Giant Anyue Gas Field, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2015, 26(11):2063-2074. |
[1] | YANG Xue, TIAN Chong, YANG Yuran, ZHANG Jingyuan, WANG Qing, WU Wei, LUO Chao. Accumulation characteristics and exploration potential of deep coalbed methane in Changning area of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 194-204. |
[2] | ZHU Suyang, LIU Wei, WANG Yunfeng, JIA Chunsheng, CHEN Chaogang, PENG Xiaolong. Current situation and prospects of coalbed methane exploration and development in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 185-193. |
[3] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[4] | LI Donghui,TIAN Lingyu,NIE Haikuan,PENG Zeyang. Factor analysis and comprehensive evaluation model of shale gas well productivity based on fuzzy analytic hierarchy process: Taking Jiaoshiba shale gas field in Sichuan Basin as an example [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 417-428. |
[5] | WANG Hongyan,DONG Dazhong,SHI Zhensheng,QIU Zhen,LU Bin,SHAO Nan,SUN Shasha,ZHANG Surong. Lithfacies and “sweet spot” interval of marine shale in southern Sichuan: A case study of Shuanghe Outcrop in Wufeng-Longmaxi Formation, Changning [J]. Reservoir Evaluation and Development, 2022, 12(1): 68-81. |
[6] | LIU Ruobing,WEI Xiangfeng,LIU Zhujiang,YAN Jihong,YUAN Tao,WEI Fubin. Geological section analysis of drilling in Wufeng-Longmaxi Formation in Well-JY1 [J]. Reservoir Evaluation and Development, 2022, 12(1): 47-57. |
[7] | ZHU Tong,ZHANG Zhe,FENG Dongjun,ZHENG Rongcai,WANG Feng,PENG Yongmin. Geological characteristics of mud shale in Da'anzhai section of Fulu Town, Liangping [J]. Reservoir Evaluation and Development, 2022, 12(1): 139-149. |
[8] | HE Wenyuan,FENG Zihui,ZHANG Jinyou,BAI Yunfeng,FU Xiuli,ZHAO Ying,CHENG Xinyang,GAO Bo,LIU Chang. Characteristics of geological section of Well-GY8HC in Gulong Sag, Northern Songliao Basin [J]. Reservoir Evaluation and Development, 2022, 12(1): 1-9. |
[9] | HE Zhiliang,NIE Haikuan,JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin [J]. Reservoir Evaluation and Development, 2021, 11(2): 135-145. |
[10] | Guo Tonglou. Progress and research direction of deep shale gas exploration and development [J]. Reservoir Evaluation and Development, 2021, 11(1): 1-6. |
[11] | YANG Zhenheng,HU Zongquan,XIONG Liang,DING Jianghui,SHEN Baojian,SHI Hongliang,LU Longfei,WEI Limin,LI Zhiming. Gas storage characteristics and coupling characteristics of deep shale gas: a case study of well-X in southern Sichuan basin, China [J]. Reservoir Evaluation and Development, 2020, 10(5): 20-27. |
|