Petroleum Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (5): 711-725.doi: 10.13809/j.cnki.cn32-1825/te.2022.05.002
• Specialist Forum • Previous Articles Next Articles
SANG Shuxun1,2,3,4(),LIU Shiqi1,2,LU Shijian1,2,ZHU Qianlin1,2,WANG Meng1,2,3,HAN Sijie1,2,LIU Tong1,2,ZHENG Sijian1,2
Received:
2022-04-21
Online:
2022-09-27
Published:
2022-10-26
CLC Number:
Shuxun SANG,Shiqi LIU,Shijian LU, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 711-725.
[1] | 蔡博峰, 李琦, 张贤, 等. 中国CO2捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 北京: 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. China annual report on carbon dioxide capture, utilization, and storage (CCUS) (2021) ——Study on China's CCUS path[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China's Agenda 21, 2021. | |
[2] | 李阳, 赵清民, 薛兆杰. “双碳目标”下CCUS技术及产业化发展路径[J/OL]. 石油钻采工艺, 2022. https://kns.cnki.net/kcms/detail/13.1072.TE.20220225.1758.002.html. |
LI Yang, ZHAO Qingmin, XUE Zhaojie. CCUS technological and industrialization development path under the target of carbon peaking and carbon neutrality[J/OL]. Oil Drilling & Production Technology, 2022. https://kns.cnki.net/kcms/detail/13.1072.TE.20220225.1758.002.html. | |
[3] | 胡永乐, 郝明强. CCUS 产业发展特点及成本界限研究[J]. 油气藏评价与开发, 2020, 10(3):15-22. |
HU Yongle, HAO Mingqiang. Development characteristics and cost analysis of CCUS in China[J]. Reservoir Evaluation and Development, 2020, 10(3): 15-22. | |
[4] | IEA. Energy technology perspectives 2020: Special report on carbon capture, utilization and storage[R]. Paris: IEA, 2020. |
[5] | 全球能源互联网发展合作组织. 中国2030年前碳达峰研究报告[R/OL]. (2021-03-18)[2022-04-15]. https://www.geidco.org.cn/html/qqnyhlw/zt20210120_1/index.html. |
Global Energy Interconnection Development and Cooperation Organization. Research on China's carbon emission peak target for 2030[R/OL]. (2021-03-18)[2022-04-15]. https://www.geidco.org.cn/html/qqnyhlw/zt20210120_1/index.html. | |
[6] | GCCSI. Global status of CCS 2021[R/OL]. (2021-11-05)[2022-04-15]. https://www.globalccsinstitute.com/news-media/latest-news/media-coverage-the-global-status-of-ccs-2021. |
[7] | 蔡博峰, 李琦, 林千果, 等. 中国CO2捕集、利用与封存(CCUS)报告(2019)[R]. 北京: 生态环境部环境规划院气候变化与环境政策研究中心, 2020. |
CAI Bofeng, LI Qi, LIN Qianguo, et al. China annual report on carbon dioxide capture, utilization, and storage (CCUS) (2019)[R]. Beijing: Center for Climate Change and Environmental Policy, Chinese Academy for Environmental Planning, 2020. | |
[8] | 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47(4):1430-1451. |
SANG Shuxun, YUAN Liang, LIU Shiqi, et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society 2022, 47(4): 1430-1451. | |
[9] | ZHANG L Y, SUN N N, WANG M Q, et al. The integration of hydrogenation and carbon capture utilization and storage technology: A potential low-carbon approach to chemical synthesis in China[J]. International Journal of Energy Research, 2021, 45(14): 19789-19818. |
[10] | 聂立功. 气候目标下中国煤基能源与CCUS技术的耦合性研究[J]. 中国煤炭, 2017, 43(10):10-14. |
NIE Ligong. Study on coupling of coal-based energy and CCUS technology in China under climate target[J]. China Coal, 2017, 43(10): 10-14. | |
[11] | YANG W, PENG B, WU M Z, et al. Evaluation for CO2 geo-storage potential and suitability in Dagang oilfield[J]. Energy Procedia, 2016, 86: 41-46. |
[12] | 朱前林, 范智涵, 王闯, 等. CO2封存泄漏大气扩散规律及监测方案—以延长油田CO2-EOR工程为例[J]. 安全与环境学报, 2018, 18(4):1432-1439. |
ZHU Qianlin, FAN Zhihan, WANG Chuang, et al. Dispersion features of the atmospheric monitoring program for CO2 leakage——A case study sample of the CO2-EOR pilot project of Yanchang Oil Field[J]. Journal of Safety and Environment, 2018, 18(4): 1432-1439. | |
[13] | 陆诗建. 碳捕集利用与封存技术[M]. 北京: 中国石化出版社, 2020. |
LU Shijian. Carbon capture, utilization and storage technology[M]. Beijing: China Petrochemical Press, 2020. | |
[14] | 陆诗建, 耿春香, 李世霞, 等. 燃煤电厂烟气CO2捕集双相吸收体系研究进展[J]. 天然气化工(C1化学与化工), 2018, 43(1):115-120. |
LU Shijian, GENG Chunxiang, LI Shixia, et al. Research progress of dual-phase absorption system for CO2 capture of flue gas in coal-fired power[J]. Natural Gas Chemical Industry, 2018, 43(1): 115-120. | |
[15] | 陆诗建, 方梦祥, 陈浮, 等. AEP-DPA-CuO相变纳米流体捕集烟气中CO2[J]. 化工环保, 2021, 41(6):724-730. |
LU Shijian, FANG Mengxiang, CHEN Fu, et al. Capture of CO2 in flue gas by AEP-DPA-CuO phase change nanofluid[J]. Environmental Protection of Chemical Industry, 2021, 41(6): 724-730. | |
[16] | ALEIXO M, PRIGENT M, GIBERT A, et al. Physical and chemical properties of DMXTM solvents[J]. Energy Procedia, 2011, 4: 148-155. |
[17] | 徐志成, 王淑娟, 陈昌和. 液液两相吸收剂吸收CO2的实验研究[J]. 清华大学学报(自然科学版), 2013,(3):9-23. |
XU Zhicheng, WANG Shujuan, CHEN Changhe. Experimental study of CO2absorption by liquid-liquid biphasic solvents[J]. Journal of Tsinghua University (Science and Technology), 2013, (3): 9-23. | |
[18] | IGLAUER S. Optimum storage depths for structural CO2 trapping[J]. International Journal of Greenhouse Gas Control, 2018, 77: 82-87. |
[19] | ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geo-sequestration[J]. Journal of CO2 Utilization, 2018, 28: 408-418. |
[20] | KIVIOR T, KALDI J G, LANG S C. Seal potential in cretaceous and late Jurassic rocks of the vulcan sub-basin, North West Shelf Australia[J]. The APPEA Journal, 2002, 42(1): 203-224. |
[21] | Working Group Ⅲ of the Intergovernmental Panel on Climate Change. IPCC special report on carbon dioxide capture and storage[M]. New York: Cambridge University Press, 2005. |
[22] | 桑树勋, 刘世奇, 王文峰, 等. 深部煤层CO2地质储存与煤层气强化开发有效性理论及评价[M]. 北京: 科学出版社, 2020. |
SANG Shuxun, LIU Shiqi, WANG Wenfeng, et al. Coalbed methane in deep coal seam geological storage of CO2 and theories of strengthening development effectiveness and evaluation[M]. Beijing: Science Press, 2020. | |
[23] | LIU S Q, FANG H H, SANG S X, et al. CO2 injectability and CH4 recovery of the engineering test in Qinshui Basin, China, based on numerical simulation[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102980. |
[24] | HOSSEINI BOOSARI S S, AYBAR U, ESHKALAK M O. Carbon dioxide storage and sequestration in unconventional shale reservoirs[J]. Journal of Geoscience and Environment Protection, 2015, 3(1): 7-15. |
[25] | OTHMAN F, NAUFALIANSYAH M A, HUSSAIN F. Effect of water salinity on permeability alteration during CO2 sequestration[J]. Advances in Water Resources, 2019, 127: 237-251. |
[26] | HAN J, LEE M, LEE W, et al. Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding[J]. Applied Energy, 2016, 161: 85-91. |
[27] | AMPOMAH W, BALCH R, CATHER M, et al. Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: application to morrow sandstone reservoir[J]. Energy & Fuels, 2016, 30(10): 8545-8555. |
[28] | LI S, QIAO C, ZHANG C, et al. Determination of diffusion coefficients of supercritical CO2 under tight oil reservoir conditions with pressure-decay method[J]. Journal of CO2 Utilization, 2018, 24: 430-443. |
[29] | VILARRASA V, SILVA O, CARRERA J, et al. Liquid CO2 injection for geological storage in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2013, 14: 84-96. |
[30] | 何应付, 赵淑霞, 伦增珉, 等. 液态CO2流变特性与滤失性能分析[J]. 钻采工艺, 2020, 43(3):38-41. |
HE Yingfu, ZHAO Shuxia, LUN Zengmin, et al. Analysis of rheological and filtration properties of supercritical CO2[J]. Drilling & Production Technology, 2020, 43(3): 38-41. | |
[31] | DAI Z, VISWANATHAN H, MIDDLETON R, et al. CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites[J]. Environmental Science & Technology, 2016, 50(14): 7546-7554. |
[32] | INDU S T, MANISH K, SUNITA J V, et al. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges[J]. Bioresource Technology, 2018, 256: 478-490. |
[33] | 杨晋平, 段星, 施福富. 新型固碳工艺思路及技术研究[J]. 煤化工, 2021, 49(1):4-8. |
YANG Jinping, DUAN Xing, SHI Fufu. Research on new carbon sequestration technology[J]. Coal Chemical Industry, 2021, 49(1): 4-8. | |
[34] | 刘强, 丁杰, 纪国敬, 等. Fe-Co-K/ZrO2催化CO2加氢制低碳烯烃[J]. 无机材料学报, 2021, 36(10):1053-1061. |
LIU Qiang, DING Jie, JI Guojing, et al. Fe-Co-K/ZrO2 catalytic performance of CO2 hydrogenation to light olefins[J]. Journal of Inorganic Materials, 2021, 36(10): 1053-1061. | |
[35] | 刘超恒, 郭晓明, 钟成林, 等. 负载型CuO/TiO2催化剂催化CO2加氢制甲醇[J]. 无机化学学报, 2016, 32(8):1405-1412. |
LIU Chaoheng, GUO Xiaoming, ZHONG Chenglin, et al. Methanol synthesis from CO2 hydrogenation over supported CuO/TiO2 catalysts[J]. Journal of Inorganic Materials, 2016, 32(8): 1405-1412. | |
[36] | WANG H H, ZHANG S N, ZHAO T J, et al. Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts[J]. Science Bulletin, 2020, 65(8): 651-657. |
[37] | 柳娜, 赵丹丹, 雷艳艳, 等. 纳米Al2O3负载Ru催化剂用于CO2加氢合成甲酸研究[J]. 化学工程, 2014, 42(12):55-58. |
LIU Na, ZHAO Dandan, LEI Yanyan, et al. Ru supported on nano-alumina for CO2 hydrogenation to formic acid[J]. Chemical Engineering (China), 2014, 42(12): 55-58. | |
[38] | 陈丹艳, 杨振超, 孔政, 等. 固碳方法比较研究及利弊分析[J]. 北方农业学报, 2017, 45(3):79-85. |
CHEN Danyan, YANG Zhenchao, KONG Zheng, et al. Comparative study and analysis of advantages and disadvantages of carbon sequestration methods[J]. Journal of Northern Agriculture, 2017, 45(3): 79-85. | |
[39] | 胡小夫, 王凯亮, 沈建永, 等. 基于生物固碳技术的CO2资源化利用研究进展[J]. 华电技术, 2021, 43(6):79-85. |
HU Xiaofu, WANG Kailiang, SHEN Jianyong, et al. Research progress of CO2 resource utilization based on biological carbon sequestration technology[J]. Integrated Intelligent Energy, 2021, 43(6): 79-85. | |
[40] | 郭禹曼, 洪学明, 樊彬, 等. 光催化-微生物耦合固碳研究进展[J/OL]. 生物加工过程, 2022. https://kns.cnki.net/kcms/detail/32.1706.Q.20220301.1122.002.html. |
GUO Yuman, HONG Xueming, FAN Bin, et al. Recent development of photocatalytic-biological hybrid systems for CO2 assimilation[J/OL]. Chinese Journal of Bioprocess Engineering, 2022. https://kns.cnki.net/kcms/detail/32.1706.Q.20220301.1122.002.html. | |
[41] | BOUZON M, PERRET A, LOREAU O, et al. A synthetic alternative to canonical one-carbon metabolism[J]. ACS Synthetic Biology, 2017, 6(8): 1520-1533. |
[42] | MEYER F, KELLER P, HARTL J, et al. Methanol-essential growth of Escherichia coli[J]. Nature Communications, 2018, 9(1): 1508. |
[43] | 彭巨光, 麦荣军, 张岍, 等. 生物固碳技术在丁山河河道低碳治理项目中的应用[J]. 建筑经济, 2014, 35(2):77-80. |
PENG Juguang, MAI Rongjun, ZHANG Yan, et al. Application of biological carbon sequestration technology in Dingshan River low carbon treatment project[J]. Construction Economy, 2014, 35(2): 77-80. | |
[44] | 周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学, 2014, 44(1):63-78. |
ZHOU Wenguang, RUAN Rongsheng. Progress and development trend of microalgae biological carbon sequestration technology[J]. Scientia Sinica (Chimica), 2014, 44(1): 63-78. | |
[45] | 孙一夫, 李凤军, 何文, 等. CO2矿化养护加气混凝土试验研究[J]. 洁净煤技术, 2021, 27(2):237-245. |
SUN Yifu, LI Fengjun, HE Wen, et al. Investigation on CO2 mineralization curing of aerated concretes[J]. Clean Coal Technology, 2021, 27(2): 237-245. | |
[46] | 王建行, 赵颖颖, 李佳慧, 等. CO2的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4):12-17. |
WANG Jianxing, ZHAO Yingying, LI Jiahui, et al. Research progress of carbon dioxide capture,fixation and utilization[J]. Inorganic Chemicals Industry, 2020, 52(4): 12-17. | |
[47] | 张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程学报, 2021, 15(7):2344-2355. |
ZHANG Yapeng, CUI Longpeng, LIU Yanfang, et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2344-2355. | |
[48] | 任国宏, 廖洪强, 高宏宇, 等. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21):3556-3560. |
REN Guohong, MIAO Hongqiang, GAO Hongyu, et al. Carbon dioxide-fixing and compression strength enhancing characteristics of mineralized immobilization of fly ash-calcium carbide slag slurry[J]. Materials Reports, 2019, 33(21): 3556-3560. | |
[49] | 黄艳, 周康, 王诚, 等. 废弃混凝土碳酸化再生利用技术进展[J]. 能源工程, 2022, 42(1):34-43. |
HUANG Yan, ZHOU Kang, WANG Cheng, et al. Recent study on carbonation recycling of waste concrete technology[J]. Energy Engineering, 2022, 42(1): 34-43. | |
[50] | 马卓慧, 廖洪强, 程芳琴, 等. 粉煤灰提铝硅钙渣矿化固定CO2[J]. 硅酸盐通报, 2020, 39(4):1224-1229. |
MA Zhuohui, MIAO Hongqiang, CHENG Fangqin, et al. CO2 Sequestration by mineralization of silica calcium slag generated in process of extracting alumina from fly ash[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1224-1229. | |
[51] | 宋佳奕, 李严, 何文, 等. 基于复合胶凝材料的CO2矿化养护实验研究[J]. 能源工程, 2021, 41(3): 31-38. |
SONG Jiayi, LI Yan, HE Wen, et al. Experimental study on carbonation curing based on composite cementitious materials[J]. Energy Engineering, 2021, 41(3): 31-38. | |
[52] | HOOVER B, YAW S, MIDDLETON R. Cost MAP: An open-source software package for developing cost surfaces using a multi-scale search kernel[J]. International Journal of Geographical Information Science, 2020, 34(3): 520-538. |
[53] | BRUNSVOLD A, JAKOBSEN J P, HUSEBYE J, et al. Case studies on CO2 transport infrastructure: optimization of pipeline network, effect of ownership, and political incentives[J]. Energy Procedia, 2011, 4: 3024-3031. |
[54] | EGBERTS P, KEPPEL J F, WILDENBORG A. A decision support system for underground CO2 sequestration[C]// Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan: Pergamon, 2003, 651-655. |
[55] | NEELE F, HENDRIKS C, BRANDSMA R. DSS and economic evaluations, SESS-518318 D30[R]. Utrecht: EU Geo Capacity. 2009. |
[56] | MIDDLETON R S, BIELICKI J M. A scalable infrastructure model for carbon capture and storage: SimCCS[J]. Energy Policy, 2009, 37(3):1052-1060. |
[57] | MORBEE J, SERPA J, TZIMAS E. Optimal planning of CO2 transmission infrastructure: The JRC InfraCCS tool[J]. Energy Procedia, 2011, 4(1): 2772-2777. |
[58] | BROEK M, BREDERODE E, RAMÍREZ A, et al. An integrated GIS-MARKAL toolbox for designing a CO2 infrastructure network in the Netherlands[J]. Energy Procedia, 2009, 1(1): 4071-4078. |
[59] | 郑重. CCS源汇匹配与早期示范研究[D]. 北京: 清华大学, 2008. |
ZHENG Zhong. CCS source-sink matching and early demonstration study[D]. Beijing: Tsinghua University, 2008. | |
[60] | 黄灵燕. 基于GIS的CCS源汇匹配模型和决策支持系统[D]. 北京: 清华大学, 2009. |
HUANG Lingyan. CCS source-sink matching model and decision support system based on GIS[D]. Beijing: Tsinghua University, 2009. | |
[61] | CHEN W Y, HUANG L Y, XIANG X, et al. GIS based CCS source-sink matching models and decision support system[J]. Energy Procedia, 2011, 4(1): 5999-6006. |
[62] | WEI Y M, KANG J N, LIU L C, et al. A proposed global layout of carbon capture and storage in line with a 2 °C climate target[J]. Nature Climate Change, 2021, 11: 112-118. |
[63] | FAN J L, XU M, WEI S J, et al. Carbon reduction potential of Chin’s coal-fired power plants based on a CCUS source-sink matching model[J]. Resources, Conservation and Recycling, 2021, 168: 105320. |
[64] | HASAN M, FIRST E L, BOUKOUVALA F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCUM[J]. Computers & Chemical Engineering, 2015, 81: 2-21. |
[65] | 师志成, 赵珊珊, 张永学, 等. 工业用能过程碳捕集与封存技术发展研究[J]. 天然气与石油, 2021, 39(5):28-37. |
SHI Zhicheng, ZHAO Shanshan, ZHANG Yongxue, et al. Research on the development of carbon capture and storage (CCS) technology in industrial energy utilization process[J]. Natural Gas and Oil, 2021, 39(5): 28-37. | |
[66] | TAPIA J, LEE J Y, OOI R, et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems[J]. Sustainable Production & Consumption, 2018, 13: 1-15. |
[67] | 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6):70-80. |
ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 23(6): 70-80. | |
[68] | VAN OS P, KVAMSDAL H M, HAUGEN H A, et al. ALIGN-CCUS: The results of an ACT project on the full CCUS chain to accelerate implementation of decarbonisation in industrial areas[C]// Paper presented at the 15th Greenhouse Gas Control Technologies Conference, New York, USA, April 2021. |
[69] | SENATORE V, BUONERBA A, ZARRA T, et al. Innovative membrane photobioreactor for sustainable CO2 capture and utilization[J]. Chemosphere, 2021, 273(7): 129682. |
[70] | 翟明洋. CO2捕集、利用与封存全流程系统优化模型的开发及应用[D]. 北京: 华北电力大学, 2018. |
ZHAI Mingyang. Development and application of a full-chain carbon capture, utilization and storage system optimization model[D]. Beijing: North China Electric Power University, 2018. | |
[71] | LEONZIO G, FOSCOLO P U, Zondervan E, et al. Scenario analysis of carbon capture, utilization (particularly producing methane and methanol), and storage (CCUS) systems[J]. Industrial and Engineering Chemistry Research, 2020, 59(15): 6961-6976. |
[72] | DIAMANTE J, TAN R R, FOO D, et al. Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions[J]. Journal of Cleaner Production, 2014, 71: 67-74. |
[73] | SUN L, CHEN W Y. The improved China CCS decision support system: A case study for Beijing-Tianjin-Hebei Region of China[J]. Applied Energy, 2013, 112: 793-799. |
[74] | 钟林发, 林千果, 王香增, 等. 碳捕集与封存-提高石油采收率全流程经济性评价模型[J]. 现代化工, 2016, 36(11):7-10. |
ZHONG Linfa, LIN Qianguo, WANG Xiangzeng, et al. Economic evaluation of carbon capture and storage enhanced oil recovery[J]. Modern Chemical Industry, 2016, 36(11): 7-10. | |
[75] | SUN L, CHEN W Y. Development and application of a multi-stage CCUS source-sink matching model[J]. Applied Energy, 2017, 185: 1424-1432. |
[76] | D'AMORE F, MOCELLIN P, VIANELLO C, et al. Economic optimization of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures[J]. Applied Energy, 2018, 223: 401-415. |
[77] | 刘胜男, 魏宁, 肖敦峰, 等. 蒙古国SNG项目全流程CCUS预可行性研究[J]. 中国电机工程学报, 2021, 41(4):1258-1266. |
LIU Shengnan, WEI Ning, XIAO Dunfeng, et al. Pre-feasibility study of full-chain CCUS in Mogolia synthesis gas project[J]. Proceedings of the CSEE, 2021, 41(4): 1258-1266. | |
[78] | ZHANG S, LIU L L, ZHANG L, et al. An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China[J]. Applied Energy, 2018, 231: 194-206. |
[79] | NGUYEN T, LEONZIO G, ZONDERVAN E. Supply chain optimization framework for CO2 capture, utilization, and storage in Germany[J]. Physical Sciences Reviews, 2021: 20200054. |
[80] | PETER M, GEORG W, SANDRA S, et al. ALIGN-CCUS: Results of the 18-month test with aqueous AMP/PZ solvent at the pilot plant at Niederaussem-solvent management, emissions and dynamic behavior[C]// Paper presented at the 15th International Conference on Greenhouse Gas Control Technologies, Abu Dhabi, UAE, October 2020. |
[81] | PRESTON C, BRUCE C, MONEA M. An update on the integrated CCS project at SaskPower's Boundary Dam Power Station[C]// Paper presented at the 14th Greenhouse Gas Control Technologies Conference, Melbourne, Australia, October 2018. |
[82] | 中国石油化工集团有限公司. 中国石化启动我国首个百万吨级CCUS项目[EB/OL]. (2021-07-05)[2022-04-15]. http://www.sinopecgroup.com/group/xwzx/gsyw/20210706/news_20210706_519272414965.shtml. |
China Petrochemical Corporation LTD. The China Petrochemical Corporation LTD launches the first one million ton CCUS project of China[EB/OL]. (2021-07-05)[2022-04-15]. http://www.sinopecgroup.com/group/xwzx/gsyw/20210706/news_20210706_519272414965.shtml. | |
[83] | 宋珂琛, 崔希利, 邢华斌. CO2直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3):1152-1162. |
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162. | |
[84] | GAO W L, LIANG S Y, WANG R J, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
[1] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[2] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[3] | LIU Xugang, LI Guofeng, LI Lei, WANG Ruixia, FANG Yanming. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763. |
[4] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[5] | HE Faqi, LI Junlu, GAO Yilong, WU Jinwei, BAI Xingying, GAO Dun. Development characteristics and potential of fault-fracture reservoir in southwest margin of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 667-677. |
[6] | GAO Yuqiao, HE Xipeng, CHENG Xiong, TANG Xuan, HUA Caixia, ZAN Ling, ZHANG Peixian, CHEN Xuewu, PANG Yiwei. Discussion on high hydrocarbon generation efficiency of saline lacustrine source rocks with low TOC: A case study of the second member of Funing Formation, Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 678-687. |
[7] | SHU Qinglin,WEI Chaoping,YU Tiantian,JI Bingyu,ZHANG Zhongping,ZHENG Wangang. Development technology progress of heavy oil and establishment and application practice of new classification standard: A case study of development of heavy oil in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 529-540. |
[8] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[9] | LI Zhongchao, QI Guixue, LUO Bobo, XU Xun, CHEN Hua. Gas flooding adaptability of deep low permeability condensate gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 324-332. |
[10] | DUAN Hongliang,SHEN Tingshan,SUN Jing,HONG Yafei,LI Sichen,LU Xianrong,ZHANG Zhengyang. Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 333-342. |
[11] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
[12] | ZHENG Yiqiong, ZHANG Tao, LIU Haiying, RUAN Conghui, ZOU Shuai. New strategies of beneficial development of in-situ combustion in nearly abandoned heavy oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 504-509. |
[13] | LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518. |
[14] | LI Ning,MIAO He,CAO Kaifang. Prediction of volcanic fractures based on prestack azimuthal anisotropy: A case study of LFS area in southern Songliao Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 197-206. |
[15] | XU Guochen,DU Juan,ZHU Mingchen. Practice and understanding of water huff-n-puff in shale oil of Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 256-266. |
|