Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (2): 266-273.doi: 10.13809/j.cnki.cn32-1825/te.2025.02.011
• Oil and Gas Development • Previous Articles Next Articles
HU Qiujia1(), LIU Chunchun1, ZHANG Jianguo1(
), CUI Xinrui1, WANG Qian2, WANG Qi1, LI Jun1, HE Shan1
Received:
2024-08-29
Online:
2025-04-01
Published:
2025-04-26
Contact:
ZHANG Jianguo
E-mail:mcq_hqj@petrochina.com.cn;cz_zjg@petrochina.com.cn
CLC Number:
HU Qiujia,LIU Chunchun,ZHANG Jianguo, et al. Machine learning-based coalbed methane well production prediction and fracturing parameter optimization[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 266-273.
Table 2
Distribution of feature parameter data"
特征 | 携砂液施工排量/(m3/min) | 不同颗粒支撑剂用量/m3 | 施工液量/m3 | 总砂量/m3 | |||
---|---|---|---|---|---|---|---|
12/20目 | 20/40目 | 40/70目 | |||||
数量 | 187 | 187 | 187 | 187 | 187 | 187 | |
平均值 | 6.3 | 5.6 | 32.4 | 12.2 | 879.6 | 54.7 | |
方差 | 1.5 | 9.2 | 15.0 | 18.9 | 368.3 | 25.2 | |
最小值 | 0.6 | 0 | 0 | 0 | 287.3 | 8.1 | |
25% | 5.6 | 0 | 20.0 | 0 | 710.1 | 40.1 | |
50% | 6.2 | 0 | 37.5 | 0 | 811.8 | 50.1 | |
75% | 7.4 | 10.0 | 40.0 | 20.0 | 933.8 | 60.1 | |
最大值 | 11.0 | 70.0 | 100.0 | 60.1 | 2 467.6 | 115.2 | |
特征 | 煤厚/m | 夹矸/m | 深度/m | 峰值30 d累产气量/m3 | 5 a累产气量/m3 | ||
数量 | 187 | 187 | 187 | 187 | 187 | ||
平均值 | 5.9 | 0.5 | 988.4 | 26 936.4 | 726 105.7 | ||
方差 | 1.2 | 0.4 | 412.2 | 23 909.1 | 775 065.3 | ||
最小值 | 0.7 | 0 | 657.1 | 0 | 0 | ||
25% | 5.5 | 0.4 | 791.6 | 8 166.5 | 146 131.5 | ||
50% | 6.0 | 0.6 | 965.7 | 21 218.0 | 498 499.0 | ||
75% | 6.6 | 0.7 | 1 120.7 | 37 191.5 | 1 055 182.0 | ||
最大值 | 11.3 | 2.5 | 6 094.8 | 110 622.0 | 4 002 087.0 |
Table 6
Fracturing parameter optimization and production prediction results for wells Z-3,M-3,and X-3"
井名 | Z-3 | M-3 | X-3 | ||
---|---|---|---|---|---|
压裂施工方案 | 实际 方案 | 优化 方案 | 实际 方案 | 优化 方案 | 优化 方案 |
携砂液施工排量/(m³/min) | 5.3 | 5.9 | 8.2 | 7.6 | 6.1 |
12/20目支撑剂/m³ | 0 | 1.8 | 10.0 | 16.6 | 6.9 |
20/40目支撑剂/m³ | 10.0 | 21.2 | 20.0 | 30.3 | 25.7 |
40/70目支撑剂/m³ | 10.0 | 23.1 | 10.0 | 23.2 | 24.7 |
总砂量/m³ | 20.0 | 46.1 | 40.0 | 70.1 | 57.3 |
施工液量/m³ | 307.8 | 1 204.9 | 812.2 | 1 715.4 | 1 195.6 |
峰值30 d累产气量/104 m³ | 1.37 | 3.96 | 1.01 | 2.56 | 5.22 |
5 a累产气量 /104 m³ | 24.40 | 59.41 | 23.10 | 54.20 | 42.60 |
[1] | 张聪, 李可心, 贾慧敏, 等. 郑庄北中深部煤层气水平井产能影响因素及开发技术优化[J]. 煤田地质与勘探, 2024, 52 (6): 21-32. |
ZHANG Cong, LI Kexin, JIA Huimin, et al. Factors influencing the productivity and technology optimization of horizontal wells for moderately deep coalbed methane in the northern Zhengzhuang block[J]. Coal Geology & Exploration, 2024, 52(6): 21-32. | |
[2] | 王琪, 张聪, 贾慧敏, 等. 煤层气筛管水平井低产原因分析和治理对策研究: 以沁水盆地南部煤层气筛管水平井为例[J]. 中国煤层气, 2024, 21(1): 21-24. |
WANG Qi, ZHANG Cong, JIA Huimin, et al. Study on causes and treatment methods of low production of coalbed methane screen horizontal well: A case study in southern Qinshui Basin[J]. China Coalbed Methane, 2024, 21(1): 21-24. | |
[3] | 唐书恒, 李洋, 吕建伟. 原位储层生物地球化学评价及其对煤层气开采的指示意义: 以沁水盆地南部柿庄南区块为例[J]. 煤炭学报, 2024, 49(1): 555-562. |
TANG Shuheng, YANG Ll, Jianwei LYU. In situ reservoir biogeochemical evaluation and its indicative significance for coalbed methane extraction: Taking the Shizhuangnan Block in the southern Qinshui Basin as an example[J]. Journal of China Coal Society, 2024, 49(1): 555-562. | |
[4] | 张聪, 李梦溪, 胡秋嘉, 等. 沁水盆地南部中深部煤层气储层特征及开发技术对策[J]. 煤田地质与勘探, 2024, 52(2): 122-133. |
ZHANG Cong, Mengxi Ll, HU Qiujia, et al. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin: Characteristics and technical strategies for exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 122-133. | |
[5] | 朱庆忠. 沁水盆地高煤阶煤层气高效开发关键技术与实践[J]. 天然气工业, 2022, 42(6): 87-96. |
ZHU Qingzhong. Key technologies and practices for efficient development of high-rank CBM in the Qinshui Basin[J]. Natural Gas Industry, 2022, 42(6): 87-96. | |
[6] | LYU Y M, TANG D Z, XU H, et al. Production characteristics and the key factors in high-rank coalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin, China[J]. International Journal of Coal Geology, 2012, 96: 93-108. |
[7] | LI H Y, LAU H C, HUANG S. China’s coalbed methane development: A review of the challenges and opportunities in subsurface and surface engineering[J]. Journal of Petroleum Science and Engineering, 2018, 166: 621-635. |
[8] | DU S Y, WANG M Z, YANG J S, et al. An enhanced prediction framework for coalbed methane production incorporating deep learning and transfer learning[J]. Energy, 2023, 282: 128877. |
[9] | 贾慧敏, 胡秋嘉, 张聪, 等. 煤层气双层合采直井产能预测及排采试验: 以沁水盆地郑庄西南部为例[J]. 油气藏评价与开发, 2022, 12 (4): 657-665. |
JIA Huimin, HU Qiujia, ZHANG Cong, et al. Prediction of productivity and co-drainage trial of bilayer vertical coalbed methane wells: Cases study of the southwest of Zhengzhuang Block, Qinshui Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 657-665. | |
[10] | 宋洪庆, 都书一, 杨焦生, 等. 基于机器学习的煤层气产能标定智能算法及影响因素分析[J]. 工程科学学报, 2024, 46(4): 614-626. |
SONG Hongqing, DU Shuyi, YANG Jiaosheng, et al. Forecasting and influencing factor analysis of coalbed methane productivity utilizing intelligent algorithms[J]. Chinese Journal of Engineering, 2024, 46(4): 614-626. | |
[11] | 王贝, 门鹏, 李腾, 等. 基于机器学习可解释性算法的石嘴山矿区煤层气井排采主控因素分析[J]. 中国煤层气, 2023, 20(5): 3-7. |
WANG Bei, Peng MEN, Teng Ll, et al. Analysis of main control factors of coalbed methane well drainage in Shizuishan Mining Area based on machine learning interpretability algorithm[J]. China Coalbed Methane, 2023, 20(5): 3-7. | |
[12] | DU S Y, WANG J L, WANG M Z, et al. A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns[J]. Energy, 2023, 263: 126121. |
[13] | FU X H, QIN Y, WANG G G X, et al. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology[J]. Fuel, 2009, 88(11): 2269-2277. |
[14] | GAN T, BALMAIN B, SIGBATULLIN A. Formation evaluation logoff results comparing new generation mining-style logging tools to conventional oil and gas logging tools for application in coalbed methane (CBM) field development[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1237-1250. |
[15] | 胡秋嘉, 张聪, 贾慧敏, 等. 沁水盆地南部郑庄区块中北部煤层气直井增产新技术研究与应用[J]. 煤炭学报, 2024, 49(3): 1518-1529. |
HU Qiujia, ZHANG Cong, JIA Huimin, et al. Research and application of a new stimulation technology for deep coalbed methane vertical wells in central and Northern Zhengzhuang block, southern Qinshui Basin[J]. Journal of China Coal Society, 2024, 49(3): 1518-1529. | |
[16] | 张聪, 胡秋嘉, 冯树仁, 等. 沁水盆地南部煤层气地质工程一体化关键技术[J]. 煤矿安全, 2024, 55(2): 19-26. |
ZHANG Cong, HU Qiujia, FENG Shuren, et al. Key technologies for integration of coalbed methane geology and engineering in southern Qinshui Basin[J]. Safety in Coal Mines, 2024, 55(2): 19-26. | |
[17] | LI L J, LIU D M, CAI Y D, et al. Coal structure and its implications for coalbed methane exploitation: A review[J]. Energy & Fuels, 2021, 35(1): 86-110. |
[18] | 胡秋嘉, 李梦溪, 乔茂坡, 等. 沁水盆地南部高阶煤煤层气井压裂效果关键地质因素分析[J]. 煤炭学报, 2017, 42 (6): 1506-1516. |
HU Qiujia, LI Mengxi, QIAO Maopo, et al. Analysis of key geologic factors of fracturing effect of CBM wells for high-rank coal in Southern Qinshui Basin[J]. Journal of China Coal Society, 2017, 42(6): 1506-1516. | |
[19] | 李敬松, 王涛, 王金伟, 等. 基于多层感知机模型的煤层气井压后生产动态反演研究[J]. 测井技术, 2023, 47(5): 558-568. |
LI Jingsong, WANG Tao, WANG Jinwei, et al. Production dynamic of coal-bed methane after well pressure based on multi-layer perceptron model inversion study[J]. Well Logging Technology, 2023, 47(5): 558-568. | |
[20] | MENG M, ZHONG R Z, WEI Z L. Prediction of methane adsorption in shale: Classical models and machine learning based models[J]. Fuel, 2020, 278: 118358. |
[21] | MIN C, WEN G Q, GOU L J, et al. Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing[J]. Energy, 2023, 285: 129211. |
[22] | MWAKIPUNDA G C, WANG Y T, MGIMBA M M, et al. Recent advances in carbon dioxide sequestration in deep unmineable coal seams using CO2-ECBM technology: Experimental studies, simulation, and field applications[J]. Energy & Fuels, 2023, 37: 17161-17186. |
[23] | GONG H H, LI Y Y, ZHANG J N, et al. A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107865. |
[24] | 龚斌, 王虹雅, 王红娜, 等. 基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J]. 石油学报, 2023, 44(11): 1949-1958. |
GONG Bin, WANG Hongya, WANG Hongna, et al. Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica, 2023, 44(11): 1949-1958. | |
[25] | WANG H Y, WANG Q Q, HUANG L, et al. Intelligent decision-making system for integrated geological and engineering of deep coalbed methane development[J]. Energy & Fuels, 2023, 37(18): 13976-13984. |
[26] | GAO X Y, PENG D, KUI G F, et al. Reinforcement learning based optimization algorithm for maintenance tasks scheduling in coalbed methane gas field[J]. Computers & Chemical Engineering, 2023, 170: 108131. |
[27] | ZHAO M M, XU H, ZHONG W B, et al. Robust and breathable all-textile gait analysis platform based on LeNet convolutional neural networks and embroidery technique[J]. Sensors and Actuators A: Physical, 2023, 360: 114549. |
[28] | SONG H Q, DU S Q, YANG J H, et al. Evaluation of hydraulic fracturing effect on coalbed methane reservoir based on deep learning method considering physical constraints[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110360. |
[29] | MARINS M A, BARROS B D, SANTOS I H, et al. Fault detection and classification in oil wells and production/service lines using random forest[J]. Journal of Petroleum Science and Engineering, 2021, 197: 107879. |
[30] | DU S Y, ZHAO X G, XIE C Y, et al. Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model[J]. Petroleum Science, 2023, 20(5): 2951-2966. |
[1] | WU Xi. Technology and practice for efficient development of coalbed methane horizontal wells in high-rank coal of Qinshui Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 167-174. |
[2] | WANG Liangjun, WANG Yong, ZHANG Xinwen, JIN Yunyun, ZHU Yan, ZHANG Gaoyuan, LI Hui, LI Wangju. Coal accumulation control on gas and coalbed methane exploration potential in southern Ordos Basin: A case study of Carboniferous Taiyuan Formation in Xunyi exploration area [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 175-184. |
[3] | ZHU Suyang, LIU Wei, WANG Yunfeng, JIA Chunsheng, CHEN Chaogang, PENG Xiaolong. Current situation and prospects of coalbed methane exploration and development in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 185-193. |
[4] | YANG Xue, TIAN Chong, YANG Yuran, ZHANG Jingyuan, WANG Qing, WU Wei, LUO Chao. Accumulation characteristics and exploration potential of deep coalbed methane in Changning area of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 194-204. |
[5] | WANG Pengxiang, ZHANG Zhou, YU Wanying, ZOU Qiang, YANG Zhengtao. Characteristics of pore-fracture structure and three-dimensional spatial distribution differences in deep and shallow coal reservoirs: A case study of Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 227-236. |
[6] | YU Yang, DONG Yintao, LI Yunbo, BAO Yu, ZHANG Lixia, SUN Hao. Research on prediction of bottom hole flowing pressure for vertical coalbed methane wells based on improved SSA-BPNN [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 250-256. |
[7] | ZHANG Wen, HUANG Hongxing, LIU Ying, FENG Yanqing, SUN Wei, LI Ziling, WANG Jing, ZHAO Zengping. Research on recoverable reserves and gas production characteristics of coalbed methane wells in Baode block of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 257-265. |
[8] | ZHAO Chongsheng, WANG Bo, GOU Bo, LUO Pengfei, CHEN Guojun, WU Guoquan. Equipment configuration and process technology of hybrid oil-electric fracturing for deep coalbed methane [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 292-299. |
[9] | LIN Weiqiang, CONG Peng, WANG Hong, WEI Zichen, YANG Yuntian, YAO Zhiqiang, QU Lili, MA Limin, WANG Fanglu. Application and discussion of geological guidance technology for deep coalbed methane horizontal wells: A case study of block X in Shenmu gas field, Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 300-309. |
[10] | ZHAO Haifeng, WANG Chengwang, XI Yue, WANG Chaowei. Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 310-323. |
[11] | KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932. |
[12] | ZHANG Bing, DU Fengfeng, ZHANG Haifeng, WEI Chao. Selection of favorable areas for coalbed methane development based on economic benefit evaluation: A case study of Yangjiapo block in eastern margin of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 933-941. |
[13] | QIU Wenci, SANG Shuxun, GUO Zhijun, HAN Sijie, ZHOU Xiaozhi, ZHOU Peiming, WU Zhangli, SANG Guoyun, ZHANG Binbin, GAO Wei. Characteristics of stratified coal reservoirs in Liupanshui coalfield of Guizhou Province and exploration and development direction of coalbed methane [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 959-966. |
[14] | WANG Zhijian. Mechanism study on effect of CO2 phase transition fracturing on methane adsorption in coal [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 967-974. |
[15] | HUANG Li, XIONG Xianyue, WANG Feng, SUN Xiongwei, ZHANG Yixin, ZHAO Longmei, SHI Shi, ZHANG Wen, ZHAO Haoyang, JI Liang, DENG Lin. A new method for determining factors Influencing productivity of deep coalbed methane vertical cluster wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 990-996. |
|