Petroleum Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (5): 734-740.doi: 10.13809/j.cnki.cn32-1825/te.2022.05.004
• Methodological and Theory • Previous Articles Next Articles
WANG Gaofeng1(),LIAO Guangzhi2,LI Hongbin3,HU ZhiMing1,3,WEI Ning4,CONG Lianzhu2
Received:
2022-03-07
Online:
2022-09-27
Published:
2022-10-26
CLC Number:
Gaofeng WANG,Guangzhi LIAO,Hongbin LI, et al. Mechanism and calculation model of EOR by CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 734-740.
[1] | 自然资源部. 全国石油天然气资源勘查开采情况通报[R]. 北京: 中华人民共和国自然资源部, 2021. |
Ministry of Natural Resources. National oil and gas resources exploration and exploitation[R]. Beijing: Ministry of Natural Resources(PRC), 2021. | |
[2] | 郭平, 景莎莎, 彭彩珍. 气藏提高采收率技术及其对策[J]. 天然气工业, 2014, 34(2):48-55. |
GUO Ping, JING Shasha, PENG Caizhen. Technology and countermeasures for gas recovery enhancement[J]. Natural Gas Industry, 2014, 34(2): 48-55. | |
[3] |
房涛, 张立宽, 刘乃贵, 等. 核磁共振技术定量表征致密砂岩气储层孔隙结构——以临清坳陷东部石炭系—二叠系致密砂岩储层为例[J]. 石油学报, 2017, 38(8):902-915.
doi: 10.7623/syxb201708005 |
FANG Tao, ZHANG Likuan, LIU Naigui, et al. Quantitative characterization of pore structure of tight gas sandstone reservoirs by NMR T2 spectrum technology:a case study of Carboniferous-Permian tight sandstone reservoir in Linqing depression[J]. Acta Petrolei Sinica, 2017, 38(8): 902-915.
doi: 10.7623/syxb201708005 |
|
[4] |
王国亭, 何东博, 王少飞, 等. 苏里格致密砂岩气田储层岩石孔隙结构及储集性能特征[J]. 石油学报, 2013, 34(4):660-666.
doi: 10.7623/syxb201304005 |
WANG Guoting, HE Dongbo, WANG Shaofei, et al. Characteristics of the pore structure and storage capability of Sulige tight sandstone gasfield[J]. Acta Petrolei Sinica, 2013, 34(4): 660-666.
doi: 10.7623/syxb201304005 |
|
[5] | 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发, 2019, 46(5):803-810. |
JIAO Fangzheng. Re-recognition of “unconventional” in unconventional oil and gas[J]. Petroleum Exploration & Development, 2019, 46(5): 803-810. | |
[6] | 李智锋, 李治平, 苗丽丽, 等. 页岩气藏纳米孔隙气体渗流特征分析[J]. 天然气地球科学, 2013, 24(5):1042-1047. |
LI Zhifeng, LI Zhiping, MIAO Lili, et al. Gas Flow Characteristics in Nanoscale Pores of Shale Gas[J]. Natural Gas Geoscience, 2013, 24(5): 1042-1047. | |
[7] | 张曙光, 石京平, 刘庆菊, 等. 低渗致密砂岩气藏岩石的孔隙结构与物性特征[J]. 新疆地质, 2004, 22(4):438-441. |
ZHANG Shuguang, SHI Jingping, LIU Qingju, et al. Research on Pore Structure and Character of Tight Sand Gas Reservoirs[J]. Xinjiang Geology, 2004, 22(4): 438-441. | |
[8] | 王晓琦, 翟增强, 金旭, 等. 地层条件下页岩有机质孔隙内CO2与CH4竞争吸附的分子模拟[J]. 石油勘探与开发, 2016, 43(5:):772-779. |
WANG Xiaoqi, ZHAI Zengqiang, JIN Xu, et al. Molecular simulation of CO2/CH4 competitive adsorption in organic matter pores in shale under certain geological conditions[J]. Petroleum Exploration and Development, 2016, 43(5): 772-779. | |
[9] | 张雪芬, 陆现彩, 张林晔, 等. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6):597-604. |
ZHANG Xuefen, LU Xiancai, ZHANG Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010, 25(6): 597-604. | |
[10] | 王朋, 孙灵辉, 王核, 等. 库车坳陷下侏罗统阿合组致密砂岩储层孔隙微观结构特征及其对致密气富集的控制作用[J]. 石油与天然气地质, 2020, 41(2):295-304. |
WANG Peng, SUN Linghui, WANG He, et al. Microscopic pore structure of Ahe tight sand gas reservoirs of the Low Jurassic in Kuqa Depression and its controls on tight gas enrichment[J]. Oil & Gas Geology, 2020, 41(2): 295-304. | |
[11] | 降文萍, 张群, 崔永君, 等. 煤吸附气体的量子化学特性及其应用[J]. 天然气地球科学, 2014, 25(3):444-452. |
JIANG Wenping, ZHANG Qun, CUI Yongjun, et al. Quantum chemistry characteristics of coal adsorbing gas and their applications[J]. Natural Gas Geoscience, 2014, 25(3): 444-452. | |
[12] | 隋宏光, 姚军. CO2/CH4在干酪根中竞争吸附规律的分子模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(2):147-154. |
SUI Hongguang, YAO Jun. Molecular simulation of CO2/CH4 competitive adsorption in kerogen[J]. China University of Petroleum (Edition of Natural science), 2016, 40(2):147-154. | |
[13] | 何应付, 张亚蒲, 刘学伟. 煤层气藏单相气体渗流特征实验研究[J]. 中国煤层气, 2009, 6(1):10-14. |
HE Yingfu, ZHANG Yapu, LIU Xuewei. Experimental research on permeation characteristics of single phase gas in CBM reservoirs[J]. China Coalbed Methane, 2009, 6(1): 10-14. | |
[14] | 中科院渗流流体力学研究所. 二氧化碳提高页岩气采收率机理研究[R]. 北京: 中国石油勘探开发研究院, 2020. |
Institute of Porous Flow & Fluid Mechanics(CAS). Mechanism of CO2 enhanced shale gas recovery[R]. Beijing: Research Institute of petroleum Exploration & Development, 2020. | |
[15] |
叶建平, 冯三利, 范志强, 等. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J]. 石油学报, 2007, 28(4):77-80.
doi: 10.7623/syxb200704015 |
YE Jianping, FENG Sanli, FAN Zhiqiang, et al. Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 77-80.
doi: 10.7623/syxb200704015 |
|
[16] | 中科院武汉岩土力学研究所. 二氧化碳驱替煤层气机理研究[R]. 北京: 中国科学院, 2020. |
Institute of Rock and Soil Mechanics(CAS). Study on the mechanism of CO2 enhanced coalbed methane gas[R]. Beijing: Chinese Academy of Sciences, 2020. | |
[17] | 陈文钢, 李东泽. NH3作为CO2置换CH4水合物促进剂的分子动力学模拟研究[J]. 石油与天然气化工, 2021, 50(5):50-53. |
CHEN Wengang, LI Dongze. Molecular dynamics simulation of NH3 as a promoter for CO2 replacement of CH4 hydrate[J]. Chemical Engineering of Oil & Gas, 2021, 50(5): 50-53. | |
[18] | 李士伦, 张正卿, 冉新权. 注气提高石油采收率技术[M]. 成都: 四川科学技术出版社, 2001. |
LI Shilun, ZHANG Zhengqing, RAN Xinquan. Gas injection enhanced oil recovery technology[M]. Chengdu: Sichuan Science & Technology Press, 2001. | |
[19] | 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2):209-216. |
QIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration & Development, 2015, 42(2): 209-216. | |
[20] | 廖广志, 王红庄, 王正茂. 注空气开发理论与技术[M]. 北京: 石油工业出版社, 2020. |
LIAO Guangzhi, WANG Hongzhuang, WANG Zhengmao. Theory and technology oilfield air injection development[M]. Beijing: Petroleum Industry Press, 2020. | |
[21] | 俞凯, 刘伟, 陈祖华. 陆相低渗透油藏CO2混相驱技术[M]. 北京: 中国石化出版社, 2016. |
YU Kai, LIU Wei, CHEN Zuhua. CO2 miscible flooding technology in continental low permeability reservoirs[M]. Beijing: China Petrochemical Industry Press, 2016. | |
[22] | 胡永乐, 郝明强, 陈国利. 注二氧化碳提高石油采收率技术[M]. 北京: 石油工业出版社, 2018. |
HU Yongle, HAO Mingqiang, CHEN Guoli. Technology of carbon diaxide injection to enhance oil recovery[M]. Beijing: Petroleum Industry Press, 2018. | |
[23] | 王高峰, 祝孝华, 潘若生. CCUS-EOR实用技术[M]. 北京: 石油工业出版社, 2022. |
WANG Gaofeng, ZHU Xiaohua, PAN Ruosheng. Practical technology of CCUS-EOR[M]. Beijing: Petroleum Industry Press, 2022. | |
[24] | 孙龙德. 塔里木盆地凝析气田开发[M]. 北京: 石油工业出版社, 2003. |
SUN Longde. Cycling gas injection for condensate gas reservoir in Tarim Basin[M]. Beijing: Petroleum Industry Press, 2003. | |
[25] | 李敬松, 李相方, 周涌沂, 等. 凝析气藏循环注气新方法[J]. 天然气工业, 2004, 24(7):76-79. |
LI Jingsong, LI Xiangfang, ZHOU Yongxi, et al. New method of cyclic gas injection for condensate reservoirs[J]. Natural Gas Industry, 2004, 24(7): 76-79. | |
[26] | 朱维耀, 江同文, 焦玉卫. 凝析气藏相变传质渗流理论和高效开发技术[M]. 北京: 石油工业出版社, 2016. |
ZHU Weiyao, JIANG Tongwen, JIAO Yuwei. Phase change mass transfer seepage theory and efficient development technology of condensate gas reservoirs[M]. Beijing: Petroleum Industry Press, 2016. | |
[27] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1):20-28. |
QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. | |
[28] | 王高峰, 秦积舜, 孙伟善. 碳捕集利用与封存案例分析及产业发展建议[M]. 北京: 化学工业出版社, 2020. |
WANG Gaofeng, QIN Jishun, SUN Weishan. CCUS cases analysis and industrial development suggestions[M]. Beijing: Chemistry Industry Press, 2020. | |
[29] | 李媛, 刘世常, 张寅晖. H2S与CO2共存条件下气田地面集输系统内腐蚀影响因素分析方法研究[J]. 石油与天然气化工, 2020, 49(1):82-86. |
LI Yuan, LIU Shichang, ZHANG Yinhui. Study on analysis method of internal corrosion affecting factor under the coexistence of CO2 and H2S in surface gathering system[J]. Chemical Engineering of Oil & Gas, 2020, 49(1): 82-86. | |
[30] |
秦积舜, 张可, 陈兴隆. 高含水后CO2驱油机理的探讨[J]. 石油学报, 2010, 31(5):797-800.
doi: 10.7623/syxb201005016 |
QIN Jishun, ZHANG Ke, CHEN Xinglong. Mechanism of the CO2 flooding as reservoirs containing high water[J]. Acta Petrolei Sinica, 2010, 31(5): 797-800.
doi: 10.7623/syxb201005016 |
|
[31] | 汤勇, 张超, 杜志敏, 等. CO2驱提高气藏采收率及埋存实验[J]. 油气藏评价与开发, 2015, 5(5):34-40. |
TANG Yong, ZHANG Chao, DU Zhimin, et al. Experiments on enhancing gas recovery and sequestration by CO2 displacement[J]. Reservoir Evaluation and Development, 2015, 5(5): 34-40. | |
[32] | 赵丹, 蔡长宏, 安珏东, 等. 页岩中基于孔隙度和有机碳含量的甲烷吸附量计算[J]. 石油与天然气化工, 2021, 50(2):88-92. |
ZHAO Dan, CAI Changhong, AN Juedong, et al. Calculation of methane adsorption in shale based on porosity and organic carbon content[J]. Chemical Engineering of Oil & Gas, 2021, 50(2): 88-92. | |
[33] | 王高峰, 李花花, 李金龙. 低渗透油藏混相驱合理注气时机[J]. 科学技术与工程, 2016, 16(17):145-148. |
WANG Gaofeng, LI Huahua, LI Jinlong. Timing of gas injection in tight reservoirs[J]. Science Technology & Engineering, 2016, 16(17): 145-148. |
[1] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[2] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[3] | LIU Xugang, LI Guofeng, LI Lei, WANG Ruixia, FANG Yanming. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763. |
[4] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[5] | HE Faqi, LI Junlu, GAO Yilong, WU Jinwei, BAI Xingying, GAO Dun. Development characteristics and potential of fault-fracture reservoir in southwest margin of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 667-677. |
[6] | GAO Yuqiao, HE Xipeng, CHENG Xiong, TANG Xuan, HUA Caixia, ZAN Ling, ZHANG Peixian, CHEN Xuewu, PANG Yiwei. Discussion on high hydrocarbon generation efficiency of saline lacustrine source rocks with low TOC: A case study of the second member of Funing Formation, Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 678-687. |
[7] | SHU Qinglin,WEI Chaoping,YU Tiantian,JI Bingyu,ZHANG Zhongping,ZHENG Wangang. Development technology progress of heavy oil and establishment and application practice of new classification standard: A case study of development of heavy oil in Shengli Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 529-540. |
[8] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[9] | LI Zhongchao, QI Guixue, LUO Bobo, XU Xun, CHEN Hua. Gas flooding adaptability of deep low permeability condensate gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 324-332. |
[10] | DUAN Hongliang,SHEN Tingshan,SUN Jing,HONG Yafei,LI Sichen,LU Xianrong,ZHANG Zhengyang. Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 333-342. |
[11] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
[12] | ZHENG Yiqiong, ZHANG Tao, LIU Haiying, RUAN Conghui, ZOU Shuai. New strategies of beneficial development of in-situ combustion in nearly abandoned heavy oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 504-509. |
[13] | LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518. |
[14] | LI Ning,MIAO He,CAO Kaifang. Prediction of volcanic fractures based on prestack azimuthal anisotropy: A case study of LFS area in southern Songliao Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 197-206. |
[15] | XU Guochen,DU Juan,ZHU Mingchen. Practice and understanding of water huff-n-puff in shale oil of Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 256-266. |
|