Petroleum Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (6): 859-868.doi: 10.13809/j.cnki.cn32-1825/te.2022.06.004
• Geothermal Development and Utilization • Previous Articles Next Articles
LI Chao(),JIANG Chao(),GUAN Yanling,ZONG Congcong,QU Hua,WU Qiaolan
Received:
2022-06-17
Online:
2022-12-02
Published:
2022-12-26
Contact:
JIANG Chao
E-mail:Lichao_changan@163.com;ChaoJiang@chd.edu.cn
CLC Number:
Chao LI,Chao JIANG,Yanling GUAN, et al. Ground temperature response and thermal effect radius of heat transfer of deep buried pipe[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 859-868.
Table 1
Ground temperature variation ΔT(℃) around buried pipe with running time and radial distance at the depth of 50 m"
径向距离 (m) | ΔT(℃) | ||||||||
---|---|---|---|---|---|---|---|---|---|
第一年 供暖期结束 | 第一年 恢复期结束 | 第二年 供暖期结束 | 第二年 恢复期结束 | 第三年 供暖期结束 | 第三年 恢复期结束 | 第四年 供暖期结束 | 第四年 恢复期结束 | 第五年 供暖期结束 | |
14.76 | 0.001 | 0.049 | 0.070 | 0.130 | 0.150 | 0.204 | 0.221 | 0.269 | 0.283 |
16.25 | 0 | 0.030 | 0.048 | 0.094 | 0.114 | 0.158 | 0.177 | 0.217 | 0.233 |
17.89 | 0 | 0.016 | 0.031 | 0.065 | 0.083 | 0.119 | 0.137 | 0.170 | 0.186 |
19.70 | 0 | 0.008 | 0.018 | 0.043 | 0.057 | 0.086 | 0.102 | 0.130 | 0.145 |
21.69 | 0 | 0.004 | 0.010 | 0.026 | 0.037 | 0.060 | 0.072 | 0.096 | 0.108 |
23.69 | 0 | 0.001 | 0.005 | 0.016 | 0.024 | 0.041 | 0.050 | 0.070 | 0.080 |
25.69 | 0 | 0.001 | 0.002 | 0.009 | 0.015 | 0.028 | 0.035 | 0.050 | 0.059 |
27.69 | 0 | 0 | 0.001 | 0.005 | 0.009 | 0.018 | 0.024 | 0.036 | 0.042 |
29.70 | 0 | 0 | 0 | 0.003 | 0.005 | 0.012 | 0.016 | 0.025 | 0.030 |
31.70 | 0 | 0 | 0 | 0.002 | 0.003 | 0.008 | 0.010 | 0.018 | 0.022 |
33.70 | 0 | 0 | 0 | 0.001 | 0.002 | 0.005 | 0.007 | 0.012 | 0.015 |
35.70 | 0 | 0 | 0 | 0 | 0.001 | 0.003 | 0.004 | 0.008 | 0.010 |
37.71 | 0 | 0 | 0 | 0 | 0 | 0.002 | 0.003 | 0.005 | 0.007 |
39.71 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0.002 | 0.004 | 0.005 |
41.71 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0.001 | 0.002 | 0.003 |
43.71 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0.001 | 0.002 |
45.71 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0.001 |
47.72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0.001 |
Table 2
Thermal effect radius of buried pipe at different depth and time"
埋管深度 (m) | 影响半径(m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
第一年 供暖期结束 | 第一年 恢复期结束 | 第二年 供暖期结束 | 第二年 恢复期结束 | 第三年 供暖期结束 | 第三年 恢复期结束 | 第四年 供暖期结束 | 第四年 恢复期结束 | 第五年 供暖期结束 | |
500 | 14.76 | 25.69 | 29.70 | 35.70 | 39.71 | 43.71 | 45.71 | 49.72 | 51.72 |
1 000 | 14.76 | 23.69 | 27.69 | 33.70 | 35.70 | 41.71 | 43.71 | 45.71 | 47.72 |
1 500 | 14.76 | 25.69 | 27.69 | 33.70 | 37.71 | 41.71 | 43.71 | 47.72 | 49.72 |
2 000 | 16.25 | 29.70 | 33.70 | 39.71 | 43.71 | 47.72 | 51.72 | 55.73 | 57.73 |
2 500 | 14.76 | 25.69 | 29.70 | 35.70 | 37.71 | 43.71 | 45.71 | 49.72 | 51.72 |
Table 3
Thermal effect radius of buried pipe when ΔT = 0.1 ℃"
埋管深度 (m) | 影响半径(m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
第一年 供暖期结束 | 第一年 恢复期结束 | 第二年 供暖期结束 | 第二年 恢复期结束 | 第三年 供暖期结束 | 第三年 恢复期结束 | 第四年 供暖期结束 | 第四年 恢复期结束 | 第五年 供暖期结束 | |
500 | 7.48 | 12.16 | 12.16 | 14.76 | 16.25 | 17.89 | 19.70 | 19.70 | 21.69 |
1 000 | 9.09 | 14.76 | 16.25 | 17.89 | 19.70 | 21.69 | 23.69 | 25.69 | 25.69 |
1 500 | 8.25 | 13.40 | 16.25 | 17.89 | 19.70 | 21.69 | 23.69 | 25.69 | 25.69 |
2 000 | 9.09 | 14.76 | 16.25 | 19.70 | 19.70 | 23.69 | 23.69 | 25.69 | 27.69 |
2 500 | 10.02 | 17.89 | 19.70 | 23.69 | 23.69 | 27.69 | 29.70 | 31.70 | 31.70 |
Table 4
Thermal effect radius of buried pipe when ΔT = 0.5 ℃"
埋管深度 (m) | 影响半径(m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
第一年 供暖期结束 | 第一年 恢复期结束 | 第二年 供暖期结束 | 第二年 恢复期结束 | 第三年 供暖期结束 | 第三年 恢复期结束 | 第四年 供暖期结束 | 第四年 恢复期结束 | 第五年 供暖期结束 | |
500 | 5.58 | 3.07 | 6.79 | 7.48 | 8.25 | 9.09 | 9.09 | 11.04 | 11.04 |
1 000 | 6.79 | 9.09 | 10.02 | 12.16 | 13.40 | 14.76 | 14.76 | 16.25 | 17.89 |
1 500 | 6.79 | 10.02 | 11.04 | 13.40 | 14.76 | 16.25 | 16.25 | 17.89 | 17.89 |
2 000 | 7.48 | 11.04 | 12.16 | 14.76 | 16.25 | 17.89 | 17.89 | 19.70 | 19.70 |
2 500 | 9.09 | 13.40 | 14.76 | 17.89 | 19.70 | 21.69 | 21.69 | 23.69 | 23.69 |
Table 5
Comparison of thermal effect radii of buried pipe under three inlet temperature conditions when ΔT = 0.001 ℃,D = 2 000 m"
进水温度工况 | 影响半径(m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
第一年 供暖期结束 | 第一年 恢复期结束 | 第二年 供暖期结束 | 第二年 恢复期结束 | 第三年 供暖期结束 | 第三年 恢复期结束 | 第四年 供暖期结束 | 第四年 恢复期结束 | 第五年 供暖期结束 | |
GK-7 | 16.25 | 29.70 | 33.70 | 39.71 | 43.71 | 47.72 | 51.72 | 55.73 | 57.73 |
GK-12 | 16.25 | 29.70 | 33.70 | 39.71 | 43.71 | 47.72 | 49.72 | 55.73 | 57.73 |
GK-17 | 16.25 | 27.69 | 31.70 | 39.71 | 41.71 | 47.72 | 49.72 | 55.73 | 57.73 |
[1] | 邢利钧. 绿色能源的合理利用与开发[J]. 绿色环保建材, 2021, 25(3): 50-51. |
XING Lijun. Reasonable utilization and development of green energy[J]. Green Environmental Protection Building Materials, 2021, 25(3): 50-51. | |
[2] |
雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217.
doi: 10.12096/j.2096-4528.pgt.20015 |
LEI Chao, LI Tao. Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology, 2021, 42(2): 207-217.
doi: 10.12096/j.2096-4528.pgt.20015 |
|
[3] |
XU Y S, WANG X W, SHEN S L, et al. Distribution characteristics and utilization of shallow geothermal energy in China[J]. Energy and Buildings, 2020, 229: 110479.
doi: 10.1016/j.enbuild.2020.110479 |
[4] |
LUO Y Q, GUO H S, MEGGERS F, et al. Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis[J]. Energy, 2019, 185: 1298-1313.
doi: 10.1016/j.energy.2019.05.228 |
[5] |
LUO Y Q, YU J H, YAN T, et al. Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and Buildings, 2020, 212: 109829.
doi: 10.1016/j.enbuild.2020.109829 |
[6] |
LUO Y Q, XU G H, CHENG N. Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers[J]. Renewable Energy, 2021, 179: 604-624.
doi: 10.1016/j.renene.2021.07.086 |
[7] |
LI C, JIANG C, GUAN Y L. An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles[J]. Energy, 2022, 244: 122682.
doi: 10.1016/j.energy.2021.122682 |
[8] |
LI C, JIANG C, GUAN Y L, et al. Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes[J]. Energy, 2022, 255: 124533.
doi: 10.1016/j.energy.2022.124533 |
[9] |
FANG L, DIAO N R, SHAO Z K, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 2018, 167: 79-88.
doi: 10.1016/j.enbuild.2018.02.013 |
[10] | 李思奇, 赵军, 李扬, 等. 闭式中深层井下换热数值模拟与内管分段绝热影响研究[J]. 太阳能学报, 2020, 41(11): 369-374. |
LI Siqi, ZHAO Jun, LI Yang, et al. Numerical simulation of closed loop medium-deep downhole heat exchange: a focus on influence of segmented insulation on central pipe[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 369-374. | |
[11] |
CAI W L, WANG F H, CHEN C F, et al. Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts[J]. Energy, 2022, 241: 122937.
doi: 10.1016/j.energy.2021.122937 |
[12] |
CAI W L, WANG F H, CHEN S, et al. Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study[J]. Applied Energy, 2021, 289: 116590.
doi: 10.1016/j.apenergy.2021.116590 |
[13] |
HUANG Y B, ZHANG Y J, XIE Y Y, et al. Long-term thermal performance analysis of deep coaxial borehole heat exchanger based on field test[J]. Journal of Cleaner Production, 2021, 278: 123396.
doi: 10.1016/j.jclepro.2020.123396 |
[14] | 王兴, 李超, 官燕玲, 等. 竖向U型深埋管建筑供暖连续及间歇运行的现场实验[J]. 区域供热, 2018, 2(3): 8-12. |
WANG Xing, LI Chao, GUAN Yanling, et al. In-situ experiment of continuous and intermittent operation of vertical U-bend deep-buried pipe to supply heat in buildings[J]. District Heating, 2018, 2(3): 8-12. | |
[15] |
PAN A Q, LU L, CUI P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1056-1065.
doi: 10.1016/j.ijheatmasstransfer.2019.07.041 |
[16] |
HU X C, BANKS J, WU L P, et al. Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta[J]. Renewable Energy, 2020, 148: 1110-1123.
doi: 10.1016/j.renene.2019.09.141 |
[17] |
BÄR K, RÜHAAK W, WELSCH B, et al. Seasonal high temperature heat storage with medium deep borehole heat exchangers[J]. Energy Procedia, 2015, 76: 351-360.
doi: 10.1016/j.egypro.2015.07.841 |
[18] | 官燕玲, 张小刚, 梁草茹, 等. 西安地区土壤源热泵地埋管换热的岩土影响因素区域分布[J]. 西北大学学报(自然科学版), 2016, 46(4): 565-572. |
GUAN Yanling, ZHANG Xiaogang, LIANG Caoru, et al. Regional distribution of rock-soil influences for ground heat exchange of ground-source heat pump in Xi’an Area[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(4): 565-572. | |
[19] | 任建喜, 刘嘉辉, 高虎艳, 等. 西安地铁沿线地层地温春季分布规律观测研究[J]. 铁道工程学报, 2012, 29(3): 101-106. |
REN Jianxi, LIU Jiahui, GAO Huyan, et al. Study on distribution law and observation of ground temperature in spring along Xi’an subway[J]. Journal of Railway Engineering Society, 2012, 29(3): 101-106. | |
[20] |
LI C, GUAN Y L, LIU J H, et al. Heat transfer performance of a deep ground heat exchanger for building heating in long-term service[J]. Renewable Energy, 2020, 166: 20-34.
doi: 10.1016/j.renene.2020.11.111 |
[21] | 饶松, 姜光政, 高雅洁, 等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 2016, 59(6): 2176-2190. |
RAO Song, JIANG Guangzheng, GAO Yajie, et al. The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin[J]. Chinese Journal of Geophysics, 2016, 59(6): 2176-2190. |
[1] | ZHANG Yuping, YANG Xiao, LIU Jun, LIU Boyang, TANG Fujiao, TAN Yiqiu. Overview of solutions to improve efficiency of ground source heat pump system [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 726-740. |
[2] | YANG Zuoya,WU Xiaomin. Numerical simulation study on multi-layer combined exploitation of natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 393-402. |
[3] | CHENG Xiaojun. Enhanced oil recovery and parameter optimization of hydrocarbon injection in fractured-cavity reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 902-909. |
[4] | GUO Hong,XIA Yan,CHEN Lei,JIN Guang,LIU Jianqiang. Numerical simulation on influence factors of heat transfer performance of geothermal wells which transformed from abandoned oil and gas wells [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 850-858. |
[5] | Xue Heng,Huang Zuxi,Zhao Liqiang,Wang Hehua,Liu Pingli,Liu Fei,Cheng Yi,Cen Yuda. Optimization study on horizontal well acidizing modes and injection parameters in carbonate reservoir [J]. Reservoir Evaluation and Development, 2018, 8(3): 66-72. |
|