 
		Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (6): 726-740.doi: 10.13809/j.cnki.cn32-1825/te.2023.06.003
• Geothermal Energy Development and Utilization • Previous Articles Next Articles
					
													ZHANG Yuping1( ),YANG Xiao2,LIU Jun1,LIU Boyang3,TANG Fujiao2(
),YANG Xiao2,LIU Jun1,LIU Boyang3,TANG Fujiao2( ),TAN Yiqiu2
),TAN Yiqiu2
												  
						
						
						
					
				
Received:2023-03-13
															
							
															
							
															
							
																	Online:2024-01-03
															
							
																	Published:2023-12-26
															
						
						CLC Number:
Yuping ZHANG,Xiao YANG,Jun LIU, et al. Overview of solutions to improve efficiency of ground source heat pump system[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 726-740.
| [1] | 中华人民共和国国家发展和改革委员会环资司. 2022年中国能源生产和消费相关数据[R/OL].(2023-03-02)[2023-03-13]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202303/t20230302_1350587.html. | 
| Environmental Resources Department of the National Development and Reform Commission of the People's Republic of China. Relevant data on China's energy production and consumption in 2022[R/OL].(2023-03-02)[2023-03-13]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/202303/t20230302_1350587.html. | |
| [2] | 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-341. | 
| WANG Guiling, LU Chuan. Progress in geothermal resource extraction and utilization technology driven by carbon neutrality goals[J]. Geology and Resources, 2022, 31(3): 412-341. | |
| [3] | 汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015. | 
| WANG Jiyang. Geothermal science and its applications[M]. Beijing: Science Press, 2015. | |
| [4] | TAN Y Q, ZHANG C, LYU H J, et al. Experimental and numerical analysis of the critical heating strategy for hydronic heated snow melting airfield runway[J]. Applied Thermal Engineering, 2020, 178: 115508. doi: 10.1016/j.applthermaleng.2020.115508 | 
| [5] | ZHANG C, TAN Y Q, CHEN F C, et al. Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology[J]. Energy Conversion and Management, 2019, 186: 473-486. doi: 10.1016/j.enconman.2019.03.008 | 
| [6] | 穆天洋. 略论低碳市政技术对地缘政治与国际关系的影响[J]. 市政技术, 2022, 40(8): 271-275. | 
| MU Tianyang. On the impact of low carbon municipal technology on geopolitics and international relations[J]. Municipal Technology, 2022, 40(8): 271-275. | |
| [7] | ESEN H, INALLI M, ESEN M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling[J]. Building and Environment, 2007, 42(5): 1955-1965. doi: 10.1016/j.buildenv.2006.04.007 | 
| [8] | 李嘉舒, 戴传山, 雷海燕, 等. 地埋管换热器动态热负荷下地层温度场的解析解[J]. 水文地质工程地质, 2023, 50(2): 198-206. | 
| LI Jiashu, DAI Chuanshan, LEI Haiyan, et al. Analytical solution of formation temperature field under dynamic thermal load of buried pipe heat exchanger[J]. Hydrogeological Engineering Geology, 2023, 50(2): 198-206. | |
| [9] | LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90: 101915. doi: 10.1016/j.geothermics.2020.101915 | 
| [10] | 张杰, 马培发, 莫丽, 等. 竖进平出型地埋管群设计及换热特性研究[J]. 工程热物理学报, 2022, 43(10): 2734-2741. | 
| ZHANG Jie, MA Peifa, MO Li, et al. Design and heat transfer characteristics study of vertical inlet and horizontal outlet buried pipe group[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2734-2741. | |
| [11] | LIU Z J, XU W, QIAN C, et al. Investigation on the feasibility and performance of ground source heat pump(GSHP) in three cities in cold climate zone, China[J]. Renewable Energy, 2015, 84: 89-96. doi: 10.1016/j.renene.2015.06.019 | 
| [12] | RYBACH L, EUGSTER W J. Sustainability aspects of geothermal heat pump operation, with experience from Switzerland[J]. Geothermics, 2010, 39(4): 365-369. doi: 10.1016/j.geothermics.2010.08.002 | 
| [13] | GULTEKIN A, AYDIN M, SISMAN A. Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers[J]. Applied Energy, 2019, 237: 163-170. doi: 10.1016/j.apenergy.2019.01.027 | 
| [14] | NARANJO-MENDOZA C, OYINLOLA M A, WRIGHT A J, et al. Experimental study of a domestic solar-assisted ground source heat pump with seasonal underground thermal energy storage through shallow boreholes[J]. Applied Thermal Engineering, 2019, 162: 114218. doi: 10.1016/j.applthermaleng.2019.114218 | 
| [15] | SI Q, OKUMIYA M, ZHANG X. Performance evaluation and optimization of a novel solar-ground source heat pump system[J]. Energy and Buildings, 2014, 70: 237-245. doi: 10.1016/j.enbuild.2013.11.065 | 
| [16] | LAZZARI S, PRIARONE A, ZANCHINI E. Long-term performance of BHE(borehole heat exchanger) fields with negligible groundwater movement[J]. Energy, 2010, 35(12): 4966-4974. doi: 10.1016/j.energy.2010.08.028 | 
| [17] | CHEN S, CAI W L, WITTE F, et al. Long-term thermal imbalance in large borehole heat exchangers array: A numerical study based on the Leicester project[J]. Energy and Buildings, 2020: 110518. | 
| [18] | LI C F, MAO J F, ZHANG H, et al. Effects of load optimization and geometric arrangement on the thermal performance of borehole heat exchanger fields[J]. Sustainable Cities and Society, 2017, 35: 25-35. doi: 10.1016/j.scs.2017.07.018 | 
| [19] | GIORDANO N, RAYMOND J. Alternative and sustainable heat production for drinking water needs in a subarctic climate(Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities[J]. Applied Energy, 2019, 252: 113463. doi: 10.1016/j.apenergy.2019.113463 | 
| [20] | ZHANG H Z, HAN Z W, JI M Z, et al. Analysis of influence of pipe group arrangement and heat exchanger type on operation performance of the ground source heat pump[J]. Geothermics, 2021, 97: 102237. doi: 10.1016/j.geothermics.2021.102237 | 
| [21] | CIMMINO M, BERNIER M. Effects of unequal borehole spacing on the required borehole length[J]. ASHRAE Transactions, 2014, 120:158-173. | 
| [22] | 郭敏, 刁乃仁, 朱科, 等. 冷热负荷不平衡地区地热换热器设计及其运行对策[J]. 北京工业大学学报, 2019, 45(1): 88-94. | 
| GUO Min, DIAO Nairen, ZHU Ke, et al. Design and operation strategies of geothermal heat exchangers in areas with imbalanced cooling and heating loads[J]. Journal of Beijing University of Technology, 2019, 45(1): 88-94. | |
| [23] | 肖立业, 张京业, 聂子攀, 等. 地下储能工程[J]. 地下储能工程, 2022, 41(2): 1-9. | 
| XIAO Liye, ZHANG Jingye, NIE Zipan, et al. Underground energy storage engineering[J]. Underground Energy Storage Engineering, 2022, 41(2): 1-9. | |
| [24] | GUO F, ZHU X Y, ZHANG J Y, et al. Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating[J]. Applied Energy, 2020, 264: 114763. doi: 10.1016/j.apenergy.2020.114763 | 
| [25] | OLSSON S. The sunclay and Kullavik projects - Heat storage in clay at low and high temperature[C]// First E.C. Conference on Solar Heating, Amsterdam, 1984. | 
| [26] | PELTOLA S S, LUND P D, ROUTTI J T F. First year operating experience from Kerava solar village[J]. International Journal of Ambient Energy, 1985, 6: 117-122. doi: 10.1080/01430750.1985.9675453 | 
| [27] | NORDELL B. Borehole heat store design optimization[D]. Umeå kommun, Sweden: Luleå Tekniska Universitet, 1994. | 
| [28] | GEHLIN S. Borehole thermal energy storage[M]// REES S J. Advances in Ground-Source Heat Pump Systems. Lund, Sweden: Woodhead Publishing, 2016: 295-327. | 
| [29] | REUSS M. The use of borehole thermal energy storage(BTES) systems[J]. Advances in Thermal Energy Storage Systems, 2015: 117-147. | 
| [30] | DALENBACK J O, HELLSTROM G, LUNDIN S, et al. Borehole heat storage for the Anneberg solar heated residential district in Danderyd, Sweden[C]// Terrastock 2000. Proceedings of the 8th International Conference on Thermal Energy Storage, held in Stuttgart, Germany, August 28 until September 1, 2000. | 
| [31] | REUSS M, BEUTH W, SCHMIDT M, et al. Solar district heating with seasonal storage in Attenkirchen[C]// OTTI-13 Symposium Thermische Solarenergie, held in Bad Staffelstein(Germany), 14-16 May, 2003. | 
| [32] | BAUER D, MARX R, NUßBICKER-LUX J, et al. German central solar heating plants with seasonal heat storage[J]. Solar Energy, 2010, 84: 612-623. doi: 10.1016/j.solener.2009.05.013 | 
| [33] | SIBBITT B, MCCLENAHAN D, DJEBBAR R, et al. The performance of a high solar fraction seasonal storage district heating system: Five years of operation[J]. Energy Procedia, 2012, 30: 856-865. doi: 10.1016/j.egypro.2012.11.097 | 
| [34] | NORDELL B, ANDERSSON O, RYDELL L, et al. Long-term performance of the HTBTES in Emmaboda, Sweden[C]// 13th International Energy Agency Energy Storage Greenstock Conference, held in Beijing, China, 2015. | 
| [35] | TORDRUP K W, POULSEN S E, BJØRN H. An improved method for upscaling borehole thermal energy storage using inverse finite element modelling[J]. Renewable Energy, 2017, 105: 13-21. doi: 10.1016/j.renene.2016.12.011 | 
| [36] | GUO F, YANG X. Long-term performance simulation and sensitivity analysis of a large-scale seasonal borehole thermal energy storage system for industrial waste heat and solar energy[J]. Energy and Buildings, 2021, 236: 110768. doi: 10.1016/j.enbuild.2021.110768 | 
| [37] | SHAH S K, AYE L, RISMANCHI B. Multi-objective optimisation of a seasonal solar thermal energy storage system for space heating in cold climate[J]. Applied Energy, 2020, 268: 115047. doi: 10.1016/j.apenergy.2020.115047 | 
| [38] | SOMMERFELDT N, MADANI H. In-depth techno-economic analysis of PV/Thermal plus ground source heat pump systems for multi-family houses in a heating dominated climate[J]. Solar Energy, 2019, 190: 44-62. doi: 10.1016/j.solener.2019.07.080 | 
| [39] | BERTRAM E. Unglazed PVT collectors as additional heat source in heat pump systems with borehole heat exchanger[J]. Energy Procedia, 2012: 10. | 
| [40] | BAKKER M, ZONDAG H A, ELSWIJK M J, et al. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump[J]. Solar Energy, 2005, 78(2): 331-339. doi: 10.1016/j.solener.2004.09.019 | 
| [41] | 朱大龙, 刁乃仁. 太阳能-地源热泵系统的运行模拟[J]. 建筑节能, 2016, 44(5): 26-30. | 
| ZHU Dalong, DIAO Nairen. Simulation of the operation of a solar ground source heat pump system[J]. Building Energy Efficiency, 2016, 44(5): 26-30. | |
| [42] | YOU T, WANG B L, WU W, et al. A new solution for underground thermal imbalance of ground-coupled heat pump systems in cold regions: Heat compensation unit with thermosyphon[J]. Applied Thermal Engineering, 2014, 64(1-2): 283-292. doi: 10.1016/j.applthermaleng.2013.12.010 | 
| [43] | XU X F, ZHANG X L, XIAO Y J. Research on influence of high and low temperature heat sources for heat transfer characteristics of pulsating heat pipe cold storage device[J]. Heat and Mass Transfer, 2022, 58(2): 233-246. doi: 10.1007/s00231-021-03108-8 | 
| [44] | XU L L, PU L, ZHANG S Q, et al. Hybrid ground source heat pump system for overcoming soil thermal imbalance: A review[J]. Sustainable Energy Technologies and Assessments, 2021, 44: 101098. doi: 10.1016/j.seta.2021.101098 | 
| [45] | ESLAMI-NEJAD P, BERNIER M. A preliminary assessment on the use of phase change materials around geothermal Boreholes[J]. ASHRAE Transactions, 2013, 19: 11. | 
| [46] | QI D, PU L, SUN F T, et al. Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system[J]. Applied Thermal Engineering, 2016, 106: 1023-1032. doi: 10.1016/j.applthermaleng.2016.06.048 | 
| [47] | DEHDEZI P K, HALL M R, DAWSON A R. Enhancement of soil thermo-physical properties using microencapsulated phase change materials for ground source heat pump applications[J]. Applied Mechanics and Materials, 2011, 110-116: 1191-1198. doi: 10.4028/www.scientific.net/AMM.110-116 | 
| [48] | ALKHWILDI A, ELHASHMI R, CHIASSON A. Parametric modeling and simulation of low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank[J]. Geothermics, 2020, 86: 101864. doi: 10.1016/j.geothermics.2020.101864 | 
| [49] | BONAMENTE E, AQUINO A, COTANA F. A PCM thermal storage for ground-source heat pumps: Simulating the system performance via CFD approach[J]. Energy Procedia, 2016, 101: 1079-1086. doi: 10.1016/j.egypro.2016.11.147 | 
| [50] | ZHANG M K, LIU X B, BISWAS K, et al. A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material[J]. Applied Thermal Engineering, 2019, 162: 114297. doi: 10.1016/j.applthermaleng.2019.114297 | 
| [51] | NI L, SONG W, ZENG F C, et al. Energy saving and economic analyses of design heating load ratio of ground source heat pump with gas boiler as auxiliary heat source[C]// International Conference on Electric Technology and Civil Engineering(ICETCE), 2011, Lushan, China: 1197-1200. | 
| [52] | YANG W B, SUN L L, CHEN Y P. Experimental investigations of the performance of a solar-ground source heat pump system operated in heating modes[J]. Energy and Buildings, 2015, 89: 97-111. doi: 10.1016/j.enbuild.2014.12.027 | 
| [53] | 胡松涛, 徐伟平, 佟振, 等. 应用于地铁隧道的毛细管换热器降温效果模拟研究[J]. 青岛理工大学学报, 2019, 40(5): 78-84. | 
| HU Songtao, XU Weiping, TONG Zhen, et al. Simulation study on the cooling effect of capillary heat exchangers applied in subway tunnels[J]. Journal of Qingdao University of Technology, 2019, 40(5): 78-84. | |
| [54] | 骆祖江, 杜菁菁. 基于热平衡分析的地埋管地源热泵换热方案模拟优化[J]. 农业工程学报, 2018, 34(13): 246-255. | 
| LUO Zujiang, DU Jingjing. Simulation and optimization of heat transfer schemes for buried pipe ground source heat pumps based on heat balance analysis[J]. Journal of Agricultural Engineering, 2018, 34(13): 246-255. | |
| [55] | LIU Z J, LI Y W, XU W, et al. Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case[J]. Energy, 2019, 173: 28-37. doi: 10.1016/j.energy.2019.02.061 | 
| [56] | CUI W Z, ZHOU S Y, LIU X Y. Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower[J]. Energy and Buildings, 2015: 10. | 
| [57] | 朱立东, 赵蕾, 王振宇. 冷却塔辅助地源热泵系统的控制策略优化[J]. 建筑科学, 2014, 30(10): 31-35. | 
| ZHU Lidong, ZHAO Lei, WANG Zhenyu. Optimization of control strategy for cooling tower assisted ground source heat pump system[J]. Architecture Science, 2014, 30(10): 31-35. | |
| [58] | HSIAO M J, KUO Y F, SHEN C C, et al. Performance enhancement of a heat pump system with ice storage subcooler[J]. International Journal of Refrigeration, 2010, 33(2): 251-258. doi: 10.1016/j.ijrefrig.2009.11.002 | 
| [59] | LI W X, LI X D, WANG Y, et al. An integrated predictive model of the long-term performance of ground source heat pump(GSHP) systems[J]. Energy and Buildings, 2018, 159: 309-318. doi: 10.1016/j.enbuild.2017.11.012 | 
| [60] | MIGLANI S, OREHOUNIG K, CARMELIET J. A methodology to calculate long-term shallow geothermal energy potential for an urban neighbourhood[J]. Energy and Buildings, 2018, 159: 462-473. doi: 10.1016/j.enbuild.2017.10.100 | 
| [61] | MENSAH K, JANG Y S, CHOI J M. Assessment of design strategies in a ground source heat pump system[J]. Energy and Buildings, 2017, 138: 301-308. doi: 10.1016/j.enbuild.2016.12.055 | 
| [62] | CARVALHO A D, MOURA P, VAZ G C, et al. Ground source heat pumps as high efficient solutions for building space conditioning and for integration in smart grids[J]. Energy Conversion and Management, 2015, 103: 991-1007. doi: 10.1016/j.enconman.2015.07.032 | 
| [63] | ALAICA A A, DWORKIN S B. Characterizing the effect of an off-peak ground pre-cool control strategy on hybrid ground source heat pump systems[J]. Energy and Buildings, 2017, 137: 46-59. doi: 10.1016/j.enbuild.2016.12.003 | 
| [64] | CHOI J C, LEE S R, LEE D S. Numerical simulation of vertical ground heat exchangers: Intermittent operation in unsaturated soil conditions[J]. Computers and Geotechnics, 2011, 38(8): 949-958. doi: 10.1016/j.compgeo.2011.07.004 | 
| [65] | 杨卫波, 施明恒, 陈振乾. 非连续运行工况下垂直地埋管换热器的换热特性[J]. 东南大学学报(自然科学版), 2013, 43(2): 328-333. | 
| YANG Weibo, SHI Mingheng, CHEN Zhenqian. Heat transfer characteristics of vertical buried tube heat exchangers under discontinuous operating conditions[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(2): 328-333. | |
| [66] | 张国柱, 夏才初, 孙猛, 等. 寒区隧道地源热泵供热系统及优化分析[J]. 同济大学学报, 2012, 40(4): 610-615. | 
| ZHANG Guozhu, XIA Caichu, SUN Meng, et al. Ground source heat pump heating system and optimization analysis for tunnels in cold regions[J]. Journal of Tongji University, 2012, 40(4): 610-615. | |
| [67] | 袁艳平, 雷波, 曹晓玲, 等. 间歇运行对U形地埋管换热器换热特性的影响[J]. 西南交通大学学报, 2010, 45(3): 393-399. | 
| YUAN Yanping, LEI Bo, CAO Xiaoling, et al. The influence of intermittent operation on the heat transfer characteristics of U-shaped buried tube heat exchangers[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 393-399. | |
| [68] | Jalaluddin, MIYARA A. Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode[J]. Applied Thermal Engineering, 2012, 33-34: 167-174. doi: 10.1016/j.applthermaleng.2011.09.030 | 
| [69] | 王勇. 动态负荷下地源热泵性能研究[D]. 重庆: 重庆大学, 2006. | 
| WANG Yong. Research on the performance of ground source heat pump under dynamic load[D]. Chongqing: Chongqing University, 2006. | |
| [70] | YU M K, ZHANG K, CAO X Z, et al. Zoning operation of multiple borehole ground heat exchangers to alleviate the ground thermal accumulation caused by unbalanced seasonal loads[J]. Energy and Buildings, 2016, 110: 345-352. doi: 10.1016/j.enbuild.2015.11.022 | 
| [71] | COEN T, FRANÇOIS B, GERARD P. Analytical solution for multi-borehole heat exchangers field including discontinuous and heterogeneous heat loads[J]. Energy and Buildings, 2021, 253: 111520. doi: 10.1016/j.enbuild.2021.111520 | 
| [72] | YOU T, ZENG W T. Zoning operation of energy piles to alleviate the soil thermal imbalance of ground source heat pump systems[J]. Energy and Built Environment, 2023, 4(1): 57-63. doi: 10.1016/j.enbenv.2021.08.001 | 
| [73] | 吴晅, 周雅慧, 路子业, 等. 地埋管群全年蓄热取热同步模式下岩土传热特性[J]. 地下空间与工程学报, 2020, 16(1): 274-287. | 
| WU Xuan, ZHOU Yahui, LU Ziye, et al. Heat transfer characteristics of rock and soil under the synchronous mode of annual heat storage and extraction of buried pipe groups[J]. Journal of Underground Space and Engineering, 2020, 16(1): 274-287. | |
| [74] | NOYE S, MULERO MARTINEZ R, CARNIELETTO L, et al. A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111685. doi: 10.1016/j.rser.2021.111685 | 
| [75] | CORBERAN J M, FINN D P, MONTAGUD C M, et al. A quasi-steady state mathematical model of an integrated ground source heat pump for building space control[J]. Energy and Buildings, 2011, 43(1): 82-92. doi: 10.1016/j.enbuild.2010.08.017 | 
| [76] | MOKHTAR M, STABLES M, LIU X, et al. Intelligent multi-agent system for building heat distribution control with combined gas boilers and ground source heat pump[J]. Energy and Buildings, 2013, 62: 615-626. doi: 10.1016/j.enbuild.2013.03.045 | 
| [77] | MADANI H, CLAESSON J, LUNDQVIST P. A descriptive and comparative analysis of three common control techniques for an on/off controlled ground source heat pump(GSHP) system[J]. Energy and Buildings, 2013, 65: 1-9. doi: 10.1016/j.enbuild.2013.05.006 | 
| [78] | CHIASSON A D, JOHNSON D W, YAVUZTURK C C, et al. Optimization of the ground thermal response in hybrid geothermal heat pump systems[J]. ASHRAE Transactions, 2010, 116: 212-524. | 
| [79] | GANG W J, WANG J B, WANG S W. Performance analysis of hybrid ground source heat pump systems based on ANN predictive control[J]. Applied Energy, 2014, 136: 1138-1144. doi: 10.1016/j.apenergy.2014.04.005 | 
| [1] | LIU Chengcheng. Heat extraction characteristics of stratified production and reinjection in a single geothermal well in Shaanxi [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 878-884. | 
| [2] | HE Dongbo, LYU Boshun, WANG Yujia, SUN Guanyu, ZHAO Zhongxin, HAO Jie. Thoughts and practices of geothermal energy development in PetroChina Jidong Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 825-833. | 
| [3] | XU Ning, CHEN Zhewei, XU Wanchen, WANG Ling, CUI Xiaolei, JIANG Meizhong, ZHAN Changwu. Prediction and evaluation method for development effect of shale oil storage volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 741-748. | 
| [4] | HE Dongbo, REN Lu, HAO Jie, LIU Xiaoping, CAO Qian. Quantitative evaluation system of geothermal resources based on analytic hierarchy process: A case study of middle-deep hydrothermal sandstone reservoir in Caofeidian of Hebei Province [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 713-725. | 
| [5] | LI Chao,JIANG Chao,GUAN Yanling,ZONG Congcong,QU Hua,WU Qiaolan. Ground temperature response and thermal effect radius of heat transfer of deep buried pipe [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 859-868. | 
| [6] | GUO Hong,XIA Yan,CHEN Lei,JIN Guang,LIU Jianqiang. Numerical simulation on influence factors of heat transfer performance of geothermal wells which transformed from abandoned oil and gas wells [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 850-858. | 
| 
 | ||