Petroleum Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (6): 902-909.doi: 10.13809/j.cnki.cn32-1825/te.2022.06.009
• Comprehensive Research • Previous Articles Next Articles
Received:
2022-03-24
Online:
2022-12-02
Published:
2022-12-26
CLC Number:
Xiaojun CHENG. Enhanced oil recovery and parameter optimization of hydrocarbon injection in fractured-cavity reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 902-909.
Table 1
Sampling well fluid composition and pseudo-component data of S91 in Tahe Oilfield"
原始拟组分 | 摩尔分数(%) | 划分后拟组分 | 摩尔分数(%) |
---|---|---|---|
CO2 | 1.83 | CO2 | 1.83 |
N2 | 2.66 | N2 | 2.66 |
C1 | 42.17 | C1 | 42.17 |
C2 | 7.41 | C2 | 7.41 |
C3 | 3.33 | C3+ | 10.63 |
iC4 | 0.88 | ||
nC4 | 2.13 | ||
iC5 | 0.96 | ||
nC5 | 1.30 | ||
C6 | 2.03 | ||
C7 | 2.59 | C7+ | 10.58 |
C8 | 3.12 | ||
C9 | 2.52 | ||
C10 | 2.35 | ||
C11+ | 24.72 | C11+ | 24.72 |
[1] |
袁士义, 王强, 李军诗, 等. 注气提高采收率技术进展及前景展望[J]. 石油学报, 2020, 41(12): 1623-1632.
doi: 10.7623/syxb202012014 |
YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection[J]. Acta Petrolei Sinica, 2020, 41(12): 1623-1632.
doi: 10.7623/syxb202012014 |
|
[2] | 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发, 2019, 46(3): 552-558. |
JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoir in Tarim Basin[J]. Petroleum Exploration and Development, 2019, 46(3): 552-558. | |
[3] | XIAO Y, ZHANG Z W, JIANG T W, et al. Dynamic and static combination method for fracture-vug unit division of fractured-vuggy reservoirs[J]. Arabian Journal for Science & Engineering, 2017, 43(6): 1-8. |
[4] | MING Q, HOU J, QI P, et al. Experimental study of fluid behaviors from water and nitrogen floods on a 3-D visual fractured-vuggy model[J]. Journal of Petroleum Science & Engineering, 2018, 166(3): 871-879. |
[5] | 张立安, 王少鹏, 张岚, 等. 通过地质建模剖析古潜山碳酸盐岩裂缝性储层地质特征[J]. 油气藏评价与开发, 2021, 11(5): 688-693. |
ZHANG Li'an, WANG Shaopeng, ZHANG Lan, et al. Analysis on geological characteristics of fractured carbonate reservoir in buried-hill by geological modeling[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 688-693. | |
[6] |
郑松青, 杨敏, 康志江, 等. 塔河油田缝洞型碳酸盐岩油藏水驱后剩余油分布主控因素与提高采收率途径[J]. 石油勘探与开发, 2019, 46(4): 746-754.
doi: 10.1016/S1876-3804(19)60232-6 |
ZHENG Songqing, YANG Min, KANG Zhijiang, et al. Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield[J]. Petroleum Exploration and Development, 2019, 46(4): 746-754.
doi: 10.1016/S1876-3804(19)60232-6 |
|
[7] | 周禄凯. 塔河油田缝洞型碳酸盐岩油藏气窜后剩余油分布及差异化动用方法[J]. 新疆石油天然气, 2019, 15(1): 58-61. |
ZHOU Lukai. Residual oil distribution and differential development after gas channeling of paleo-cave reservoir in Tahe Oilfield[J]. Xinjiang Oil & Gas, 2019, 15(1): 58-61. | |
[8] | 戴彩丽, 方吉超, 焦保雷, 等. 中国碳酸盐岩缝洞型油藏提高采收率研究进展[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 67-78. |
DAI Caili, FANG Jichao, JIAO Baolei, et al. Development of the research on EOR for carbonate fractured-vuggy reservoirs in China[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6): 67-78. | |
[9] | 吴昊镪, 彭小龙, 朱苏阳, 等. 基于数值模拟法与油藏开发经营一体化思想的页岩油藏经济决策研究[J]. 油气藏评价与开发, 2021, 11(3): 404-413. |
WU Haoqiang, PENG Xiaolong, ZHU Suyang, et al. Economic decision of shale reservoir based on numerical simulation and integration of reservoir development and management[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 404-413. | |
[10] | 付天宇, 刘启国, 岑雪芳, 等. 碳酸盐岩三重介质气藏NPI产量递减分析研究[J]. 油气藏评价与开发, 2021, 11(6): 905-910. |
FU Tianyu, LIU Qiguo, CEN Xuefang, et al. Normalized pressure integral production analysis of triporate-uniphase parallel inter-porosity flow model[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 905-910. | |
[11] | 马德胜, 王强, 王正波, 等. 提高采收率[M]. 北京: 石油工业出版社, 2019. |
MA Desheng, WANG Qiang, WANG Zhengbo, et al. Enhanced oil recovery[M]. Beijing: Petroleum Industry Press, 2019. | |
[12] | 胡蓉蓉. 缝洞型碳酸盐岩油藏提高采收率机理研究[D]. 青岛: 中国石油大学(华东), 2015. |
HU Rongrong. Study on EOR mechanism in fractured-vuggy carbonate reservoirs[D]. Qingdao: China University of Petroleum (East China), 2015. | |
[13] | VALDEZ R, PENNELL S P, CHENG A, et al. Miscible hydrocarbon GOGD pilot in the Yates Field Unit[C]// Paper SPE-190248-MS presented at the SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, April 2018. |
[14] | MOHAMMED M, BABADAGLI T. New insights into the interfacial phenomena during miscible displacement by hydrocarbon solvents and CO2 in heavy oil reservoirs[C]// Paper SPE-200456-MS presented at the SPE Improved Oil Recovery Conference, Virtual, August 2020. |
[15] | KHAN M R, KALAM S, KHAN R A, et al. Comparative analysis of intelligent algorithms to predict the minimum miscibility pressure for hydrocarbon gas flooding[C]// Paper SPE-197868-MS presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2019. |
[16] | 张俊, 周自武, 王伟胜, 等. 葡北油田气水交替驱提高采收率矿场试验研究[J]. 石油勘探与开发 2004, 31(6): 85-87. |
ZHANG Jun, ZHOU Ziwu, WANG Weisheng, et al. EOR field test of gas-water alternative injection in Pubei Oilfield[J]. Petroleum Exploration and Development, 2004, 31(6): 85-87. | |
[17] | 范家伟, 陶正武, 王彦秋, 等. 东河油田注天然气重力辅助混相驱提高采收率关键技术[C]// 2020油气田勘探与开发国际会议论文集. 西安: 西安石油大学出版社, 2020: 1090-1098. |
FAN Jiawei, TAO Zhengwu, WANG Yanqiu, et al. The Key technology of gravity assisted miscible flooding for natural gas injection in donghe oilfield[C]// 2020 International Field Exploration and Development Conference. Xi'an: Xi'an Petroleum University Press, 2020: 1090-1098. | |
[18] | DONG J, WU S, XING G, et al. Factors affecting water alternating hydrocarbon gas miscible flooding in a low permeability reservoir[C]// Paper IPTC-19063-MS presented at the International Petroleum Technology Conference, Beiing, China, March 2019. |
[19] | 郑家朋, 王传飞, 赵辉, 等. 冀东油田高13断块注烃气驱提高采收率优化研究[J]. 石油天然气学报, 2009, 31(4): 131-135. |
ZHENG Jiapeng, WANG Chuanfei, ZHAO Hui, et al. Study on optimization of enhanced oil recovery by hydrocarbon gas flooding in block Gao-13 of Jidong Oilfield[J]. Journal of Oil and Gas Technology, 2009, 31(4): 131-135. | |
[20] | 韩海水, 周代余, 王丽, 等. 超深巨厚油藏顶部注烃气提高采收率调控机制[J]. 中国石油大学学报(自然科学版), 2021, 45(2): 104-110. |
HAN Haishui, ZHOU Daiyu, WANG Li, et al. Regulation mechanism of EOR for natural gas crestal injection in super deep and thick reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(2): 104-110. | |
[21] | 胡蓉蓉, 姚军, 孙致学, 等. 塔河油田缝洞型碳酸盐岩油藏注气驱油提高采收率机理研究[J]. 西安石油大学学报(自然科学版), 2015, 30(2): 49-53. |
HU Rongrong, YAO Jun, SUN Zhixue, et al. Study on EOR mechanism by gas injection replacing oil in fractured-vuggy carbonate reservoir in Tahe Oilfield[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(2): 49-53. | |
[22] | 李吉康, 孙致学, 谭涛, 等. 深层缝洞型油藏烃气混相驱可行性及影响因素[J]. 新疆石油地质, 2021, 42(6): 714-719. |
LI Jikang, SUN Zhixue, TAN Tao, et al. Feasibility and influencing factors of miscible hydrocarbon gas flooding for deep fracture-vuggy reservoirs[J]. Xinjiang Petroleum Geology, 2021, 42(6): 714-719. | |
[23] | 胡蓉蓉, 姚军, 王晨晨, 等. 缝洞型碳酸盐岩油藏非混相气驱采收率影响因素[J]. 新疆石油地质, 2015, 36(4): 470-474. |
HU Rongrong, YAO Jun, WANG Chenchen, et al. Influence factors of immiscible gas flooding recovery in fractured-vuggy carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2015, 36(4): 470-474. | |
[24] | 唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339. |
TANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339. | |
[25] | 赵军, 张涛, 何胜林, 等. 基于参数优选的储层渗透率深度置信网络模型预测初探[J]. 油气藏评价与开发, 2021, 11(4): 577-585. |
ZHAO Jun, ZHANG Tao, HE Shenglin, et al. Prediction of reservoir permeability by deep belief network based on optimized parameters[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 577-585. |
[1] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[2] | LI Zhongchao, QI Guixue, LUO Bobo, XU Xun, CHEN Hua. Gas flooding adaptability of deep low permeability condensate gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 324-332. |
[3] | ZHAO Kun,LI Zeyang,LIU Juanli,HU Ke,JIANG Ranran,WANG Weixiang,LIU Xiuzhen. Parameter optimization and field practice of CO2 pre-fracturing process in Jimsar shale oil block [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 83-90. |
[4] | REN Hong,LI Weiqi,GUO Zhongchun,YANG Xiaoteng,XU Jian,WANG Xiao. Dynamic quantitative characterization and automatic identification of the buried hill reservoir types in Yakela block [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 789-800. |
[5] | LIU Xueli,ZHENG Xiaojie,DOU Lian,XIE Shuang,PENG Xiaolong,ZHU Suyang. High precision numerical simulation of thin sandstone reservoir with sufficient bottom water and multiple cyclothem: A case study on lower formation of 9th block of Tahe Oilfield [J]. Reservoir Evaluation and Development, 2022, 12(2): 391-398. |
[6] | LIU Xueli,ZHENG Xiaojie,TAN Tao,DOU Lian,XIE Shuang. Experiments on CO2 flooding mechanism for Tahe sandstone reservoir with strong bottom water [J]. Reservoir Evaluation and Development, 2020, 10(6): 115-120. |
[7] | LIU Penggang,SUN Tianli,CHEN Wei,HOU Xiaozhi,HUANG Yuanhe,ZHU Guo,HE Hai,FANG Bin. Analysis and optimization of influencing factors of negative pressure stripping desulfurization process for sour water in Yuanba gas field [J]. Reservoir Evaluation and Development, 2020, 10(4): 125-129. |
[8] | JIN Zhongkang,WANG Zhilin,MAO Chaoqi. Dominant mechanism and application of CO2 immiscible flooding in M block with low permeability [J]. Reservoir Evaluation and Development, 2020, 10(3): 68-74. |
[9] | CHENG Zhongfu,REN Bo,JIANG Yingfang,LIU Lei,YANG Zuguo. Feasibility of ground thermal cracking viscosity reduction and re-mixing technology of heavy oil in ultra-deep wells of Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 90-93. |
[10] | DU Chunhui,QIU He,CHEN Xiaofan,TIAN Liang,YUE Ping,LI Lu,YAO Junbo,WEI bo. Application of flow potential analysis technique based on numerical simulation in the development of fractured-vuggy reservoir [J]. Reservoir Evaluation and Development, 2020, 10(2): 83-89. |
[11] | YANG Ming,LI Xiaobo,TAN Tao,LI Qing,LIU Honggunag,ZANG Yixia. Remaining oil distribution and potential tapping measures for palaeo-subterranean river reservoirs: A case study of TK440 well area in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 43-48. |
[12] | LI Xiaobo,LIU Xueli,YANG Ming,TAN Tao,LI Qing,LIU Hongguang,ZHANG Yixiao. Study on relationship optimization of injection and production in fractured-vuggy reservoirs with different karst background [J]. Reservoir Evaluation and Development, 2020, 10(2): 37-42. |
[13] | WANG Leilei,LIANG Zhiyan,QIU Zhenjun,JIANG Lei,ZHAO Zhongwen. Optimization and application of tail pipe suspension device installed on electric submersible pump for super heavy oil [J]. Reservoir Evaluation and Development, 2020, 10(2): 107-110. |
[14] | QIN Fei,JIN Yanlin. Supporting study of water plugging using emulsified oil in deep condensate reservoir of YT1 Fault block in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 101-106. |
[15] | HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 1-10. |
|