Petroleum Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (6): 945-950.doi: 10.13809/j.cnki.cn32-1825/te.2022.06.014
• Comprehensive Research • Previous Articles
ZHOU Haiyan1(),ZHANG Yunlai1,LIANG Xiao1,ZHANG Jilei1,XU Yanan1,LIU Jizhu2
Received:
2021-10-25
Online:
2022-12-02
Published:
2022-12-26
CLC Number:
Haiyan ZHOU,Yunlai ZHANG,Xiao LIANG, et al. Liquid production splitting of multi-layer mining considering multiple factors[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 945-950.
Table 1
Data table of dimensionless splitting coefficient and permeability contribution rate when water cut is 0"
组号 | 产液劈分系数 | 渗透率贡献率 | 无因次产液劈分系数 |
---|---|---|---|
1 | 0.553 2 | 0.555 6 | 1.000 0 |
2 | 0.704 8 | 0.714 3 | 1.274 1 |
3 | 0.779 3 | 0.789 5 | 1.408 8 |
4 | 0.823 6 | 0.833 3 | 1.489 0 |
5 | 0.853 1 | 0.862 1 | 1.542 2 |
6 | 0.874 0 | 0.882 4 | 1.580 0 |
7 | 0.889 8 | 0.897 4 | 1.608 5 |
8 | 0.902 0 | 0.909 1 | 1.630 6 |
Table 2
Data table of dimensionless splitting coefficient and permeability contribution rate when water cut is 0.6"
组号 | 产液劈分系数 | 渗透率贡献率 | 无因次产液劈分系数 |
---|---|---|---|
1 | 0.318 6 | 0.333 3 | 1.549 0 |
2 | 0.205 7 | 0.214 3 | 1.000 0 |
3 | 0.160 8 | 0.157 9 | 0.781 9 |
4 | 0.131 6 | 0.125 0 | 0.640 1 |
5 | 0.111 0 | 0.103 4 | 0.539 8 |
6 | 0.094 5 | 0.088 2 | 0.464 1 |
7 | 0.084 3 | 0.076 9 | 0.410 1 |
8 | 0.075 3 | 0.068 2 | 0.366 3 |
Table 3
Verification results of nine sets of parallel experimental production liquids(high permeability layer)"
实验组号 | 含水率 | 渗透率 贡献率 | 计算产液劈分系数 | 实验产液劈分系数 | 相对 误差 |
---|---|---|---|---|---|
1 | 0.556 | 0.750 6 | 0.757 5 | 0.825 2 | 0.082 0 |
2 | 0.602 | 0.751 2 | 0.760 4 | 0.804 5 | 0.054 8 |
3 | 0.671 | 0.757 0 | 0.770 2 | 0.914 7 | 0.157 9 |
4 | 0.716 | 0.869 6 | 0.887 8 | 0.874 1 | 0.015 7 |
5 | 0.747 | 0.787 0 | 0.805 9 | 0.857 4 | 0.060 1 |
6 | 0.769 | 0.695 7 | 0.714 1 | 0.760 4 | 0.060 9 |
7 | 0.785 | 0.517 2 | 0.532 2 | 0.690 5 | 0.229 3 |
8 | 0.798 | 0.642 2 | 0.661 1 | 0.572 6 | 0.154 6 |
9 | 0.799 | 0.705 5 | 0.726 2 | 0.800 5 | 0.092 9 |
Table 4
Nine sets of parallel experimental production liquids verification results table(medium permeability layer)"
实验组号 | 含水率 | 渗透率 贡献率 | 计算产液劈分系数 | 实验产液劈分系数 | 相对 误差 |
---|---|---|---|---|---|
1 | 0.556 | 0.167 7 | 0.171 5 | 0.157 8 | 0.087 1 |
2 | 0.602 | 0.195 1 | 0.194 2 | 0.178 8 | 0.085 9 |
3 | 0.671 | 0.186 9 | 0.178 6 | 0.036 0 | 3.961 8 |
4 | 0.716 | 0.103 5 | 0.103 5 | 0.112 9 | 0.082 9 |
5 | 0.747 | 0.130 1 | 0.125 2 | 0.123 5 | 0.013 5 |
6 | 0.769 | 0.262 3 | 0.236 4 | 0.218 0 | 0.084 5 |
7 | 0.785 | 0.448 3 | 0.392 9 | 0.238 0 | 0.651 0 |
8 | 0.798 | 0.321 1 | 0.285 3 | 0.407 2 | 0.299 4 |
9 | 0.799 | 0.214 6 | 0.195 5 | 0.179 5 | 0.088 9 |
[1] | 马奎前, 陈存良, 刘英宪. 基于层间均衡驱替的注水井分层配注方法[J]. 特种油气藏, 2019, 26(4): 109-112. |
MA Kuiqian, CHEN Cunliang, LIU Yingxian. Separate-layer water injection allocation based on inter-layer balanced waterflooding[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 109-112. | |
[2] | 郑爱玲, 刘德华, 邵燕林, 等. 复杂断块油藏油砂体开发潜力及挖潜措施[J]. 特种油气藏, 2011, 18(1): 93-95. |
ZHENG Ailing, LIU Dehua, SHAO Yanlin, et al. Oil sand potential and development measures for complex fault-block reservoir[J]. Special Oil & Gas Reservoirs, 2011, 18(1): 93-95. | |
[3] | 杨明, 马栋, 王雨, 等. 海上油田多层合采井产量劈分方法[J]. 复杂油气藏, 2020, 13(1): 53-57. |
YANG Ming, MA Dong, WANG Yu, et al. Production splitting method for multi-layer production wells in offshore oilfields[J]. Complex Hydrocarbon Reservoirs, 2020, 13(1): 53-57. | |
[4] | SALIMOV R, SARSEKOV A. Allocation of zonal production in smart wells: Offshore Abu-Dhabi case study[C]// Paper SPE-188416-MS presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2017. |
[5] | 李文红, 任超群, 林瑞敏, 等. 一种新的水驱油藏多层合采井产量动态劈分方法[J]. 中国海上油气, 2019, 31(4): 89-95. |
LI Wenhong, REN Chaoqun, LIN Ruimin, et al. A new dynamic production splitting method for multi-layer commingled production wells in water-flooding reservoirs[J]. China Offshore Oil and Gas, 2019, 31(4): 89-95. | |
[6] | NASHAAT M, KOLIVAND H, ZHIYENKULOV M, et al. Unlocking new/missed reservoir zones at shallow depth based on integrating post-hydraulic fracture performance with reservoir, petrophysics, and geology data[C]// Paper SPE-208517-MS presented at the SPE Eastern Europe Subsurface Conference, Kyiv, Ukraine, November 2021. |
[7] | MI L D, HU X Y, JIA Y, et al. A novel dynamic production splitting method based on the catastrophe theory[C]// Paper SPE-194968-MS presented at the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, March 2019. |
[8] | 赵贤正, 曾溅辉, 韩国猛, 等. 渤海湾盆地黄骅坳陷板桥凹陷深层低渗透(致密)砂岩气藏充注特征及成藏过程[J]. 石油与天然气地质, 2020, 41(5): 913-927. |
ZHAO Xianzheng, ZENG Jianhui, HAN Guomeng, et al. Charging characteristics and accumulation process of deep low-permeability (tight) sand gas reservoirs in Banqiao Sag,Huanghua Depression[J]. Oil & Gas Geology, 2020, 41(5): 913-927. | |
[9] | 晏庆辉, 付强, 陈建华, 等. 一种简单实用的综合劈分模型[J]. 中国石油和化工标准与质量, 2021, 41(17): 125-126. |
YAN Qinghui, FU Qiang, CHEN Jianhua, et al. A simple and practical comprehensive splitting model[J]. China Petroleum and Chemical Industry Standard & Quality, 2021, 41(17): 125-126. | |
[10] | 罗威, 郭小哲, 黄远杨, 等. 直井产液剖面预测及分层控水效果计算方法[J]. 油气井测试, 2018, 27(5): 1-6. |
LUO Wei, GUO Xiaozhe, HUANG Yuanyang, et al. Prediction of production profile and evaluation method of stratified water control effect in vertical wells[J]. Well Testing, 2018, 27(5): 1-6. | |
[11] | VAL LERMA M K. Analytical method to predict waterflood performance[C]// Paper SPE-83511-MS presented at the SPE Western Regional/AAPG Pacific Section Joint Meeting, Long Beach, California, May 2003. |
[12] | 李源流, 杨兆平, 潘多寿, 等. 考虑相对渗透率变化的砂岩油藏产量劈分方法[J]. 西安石油大学学报(自然科学版), 2020, 35(3): 72-76. |
LI Yuanliu, YANG Zhaoping, PAN Duoshou, et al. A production splitting method of sandstone reservoir considering the change of relative permeability[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2020, 35(3): 72-76. | |
[13] | 付强, 薛国庆, 任超群, 等. 多层合采井产量劈分新方法在W油田的应用[J]. 断块油气田, 2019, 26(4): 512-515. |
FU Qiang, XUE Guoqing, REN Chaoqun, et al. Application of new production splitting method for multilayer combined production wells in W oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 512-515. | |
[14] | 陈晓冬, 郑永仙, 项燚伟, 等. 长井段互层油藏单井产量劈分研究——以青海花土沟油田为例[J]. 石油地质与工程, 2016, 30(6): 89-91. |
CHEN Xiaodong, ZHENG Yongxian, XIANG Yiwei, et al. Study on production splitting of single well in interbedded reservoir of long well section: A case study of Huatugou Oilfield, Qinghai Province[J]. Petroleum Geology and Engineering, 2016, 30(6): 89-91. | |
[15] | 王立, 喻高明, 傅宣豪, 等. 基于反距离加权插值法的产量劈分新方法[J]. 断块油气田, 2018, 25(5): 617-621. |
WANG Li, YU Gaoming, FU Xuanhao, et al. New method for production cleavage by inverse distance weighted interpolation[J]. Fault-Block Oil & Gas Field, 2018, 25(5): 617-621. | |
[16] | 龙海宁, 喻高明, 傅宣豪. 结合灰色关联改进反距离加权插值法的劈分新方法[J]. 科学技术与工程, 2019, 19(36): 140-146. |
LONG Haining, YU Gaoming, FU Xuanhao. New splitting method of improving the inverse distance weighted interpolation method based on grey correlation[J]. Science Technology and Engineering, 2019, 19(36): 140-146. | |
[17] | 屈继峰, 党少敏, 高月红, 等. 一种水驱砂岩油藏合采井产量劈分新方法[J]. 辽宁化工, 2013, 42(7): 825-827. |
QU Jifeng, DANG Shaomin, GAO Yuehong, et al. Science Technology and Engineering[J]. Liaoning Chemical Industry, 2013, 42(7): 825-827. | |
[18] | 杜庆龙, 朱丽红. 油水井分层动用状况研究新方法[J]. 石油勘探与开发, 2004, 31(5): 96-98. |
DU Qinglong, ZHU Lihong. Science Technology and Engineering[J]. Petroleum Exploration and Development, 2004, 31(5): 96-98. | |
[19] | 张继成, 王潇悦. 考虑含水饱和度的产量劈分方法及应用[J]. 浙江大学学报(理学版), 2015, 42(5): 626-630. |
ZHANG Jicheng, WANG Xiaoyue. Science Technology and Engineering[J]. Journal of Zhejiang University(Science Edition), 2015, 42(5): 626-630. | |
[20] | 夏静, 冯阳, 陈新宇. 油井分层注水倍数计算方法[J]. 数学的实践与认识, 2017, 47(3): 114-119. |
XIA Jing, FENG Yang, CHEN Xinyu. Computing method of separating layer water injected volume about oil wells[J]. Mathematics in Practice and Theory, 2017, 47(3): 114-119. | |
[21] |
SILVA T L, CAMPONOGARA E, TEIXEIRA A F, et al. Modeling of flow splitting for production optimization in offshore gas-lifted oil fields: Simulation validation and applications[J]. Journal of Petroleum Science and Engineering, 2015, 128: 86-97.
doi: 10.1016/j.petrol.2015.02.018 |
[22] | 杨兆平, 岳世俊, 郑长龙, 等. 薄互层砂岩油藏多因素综合约束的产量劈分方法[J]. 岩性油气藏, 2018, 30(6): 117-124. |
YANG Zhaoping, YUE Shijun, ZHENG Changlong, et al. Production split method restricted synthetically by multi-factors in thin interbed sandstone reservoirs[J]. lithologic Reservoirs, 2018, 30(6): 117-124. | |
[23] | 王少奇, 景亚锋, 王博学, 等. 基于突变理论的气井产量劈分模型在Y2区块的应用[J]. 非常规油气, 2021, 8(3): 90-97. |
WANG Shaoqi, JING Yafeng, WANG Boxue, et al. The application of gas well production split model based on catastrophe theory in Y2 block[J]. Unconventional Oil & Gas, 2021, 8(3): 90-97. | |
[24] | 陈晓明, 张建民, 王月杰, 等. 海上油田多层合采井试井模型研究与应用[J]. 特种油气藏, 2017, 24(1): 119-123. |
CHEN Xiaoming, ZHANG Jianmin, WANG Yuejie, et al. Development and application of well-test models for wells deployed for joint development of multiple layers in offshore oilfields[J]. Special Oil & Gas Reservoirs, 2017, 24(1): 119-123. | |
[25] | 林孟雄, 成育红, 张林, 等. 苏里格气田苏东区块多层产量劈分新方法[J]. 新疆地质, 2019, 37(3): 419-421. |
LIN Mengxiong, CHENG Yuhong, ZHANG Lin, et al. A new method of production dividing for commingling production in the Sudong area[J]. Xinjiang Geology, 2019, 37(3): 419-421. | |
[26] | 王英圣, 石成方, 王继强. 特高含水期油田新型水驱特征曲线公式推导[J]. 石油与天然气地质, 2020, 41(6): 1282-1287. |
WANG Yingsheng, SHI Chengfang, WANG Jiqiang. New equations for characterizing water flooding in ultra-high water-cut oilfields[J]. Oil & Gas Geology, 2020, 41(6): 1282-1287. |
[1] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[2] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[3] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[4] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[5] | GAI Changcheng,ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646. |
[6] | CHEN Xuezhong, ZHAO Huiyan, CHEN Man, XU Huaqing, YANG Jianying, YANG Xiaomin, TANG Huiying. Numerical simulation of multi-layer co-production in marine-continental transitional shale reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 382-390. |
[7] | MA Daixin,REN Xianjun,ZHAO Mifu,HAN Jiaoyan,LIU Yuhu. Theories, technologies and practices of exploration and development of volcanic gas reservoirs: A case study of Cretaceous volcanic rocks in Songnan fault depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 167-175. |
[8] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[9] | CUI Yudong, LU Cheng, GUAN Ziyue, LUO Wanjing, TENG Bailu, MENG Fanpu, PENG Yue. Effects of creep on depressurization-induced gas well productivity in South China Sea natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 809-818. |
[10] | HE Haiyan, LIU Xianshan, GENG Shaoyang, SUN Junchang, SUN Yanchun, JIA Qian. Numerical simulation of UGS facilities rebuilt from oil reservoirs based on the coupling of seepage and temperature fields [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 819-826. |
[11] | LIANG Yunpei, ZHANG Huaijun, WANG Lichun, QIN Chaozhong, TIAN Jian, CHEN Qiang, SHI Bowen. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843. |
[12] | YANG Bing, FU Qiang, GUAN Jingtao, LI Linxiang, PAN Haoyu, SONG Hongbin, QIN Tingting, ZHU Zhiwei. Oil displacement efficiency based on different well pattern adjustment simulation in high water cut reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 519-524. |
[13] | CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. |
[14] | HOU Mengru,LIANG Bing,SUN Weiji,LIU Qi,ZHAO Hang. Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing [J]. Reservoir Evaluation and Development, 2023, 13(1): 100-107. |
[15] | LIU Yexuan,LIU Xiangjun,DING Yi,ZHOU Xin,LIANG Lixi. Evaluation method of fracability of shale oil reservoir considering influence of interlayer [J]. Reservoir Evaluation and Development, 2023, 13(1): 74-82. |
|