Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (6): 834-843.doi: 10.13809/j.cnki.cn32-1825/te.2023.06.015
• Comprehensive Research • Previous Articles Next Articles
LIANG Yunpei1,2(),ZHANG Huaijun1,2,WANG Lichun3,QIN Chaozhong1,2,TIAN Jian1,2(),CHEN Qiang1,2,SHI Bowen1,2
Received:
2023-01-18
Online:
2023-12-26
Published:
2024-01-03
CLC Number:
LIANG Yunpei, ZHANG Huaijun, WANG Lichun, QIN Chaozhong, TIAN Jian, CHEN Qiang, SHI Bowen. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress[J].Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843.
[1] | 刘学伟. 页岩储层水力压裂支撑裂缝导流能力影响因素[J]. 断块油气田, 2020, 27(3): 394-398. |
LIU Xuewei. Influencing factors of hydraulic propped fracture conductivity in shale reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 394-398. | |
[2] | 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14. |
ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14. | |
[3] |
KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138-154.
doi: 10.1016/j.fuel.2018.05.040 |
[4] | 温庆志, 王淑婷, 高金剑, 等. 复杂缝网导流能力实验研究[J]. 油气地质与采收率, 2016, 23(5): 116-121. |
WEN Qingzhi, WANG Shuting, GAO Jinjian, et al. Research on flow conductivity experiment in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(5): 116-121. | |
[5] | 刘先珊, 曾南豆, 李涛, 等. 基于改进PFC流固耦合算法的页岩水力压裂裂缝扩展研究[J]. 中南大学学报(自然科学版), 2022, 53(9): 3545-3560. |
LIU Xianshan, CENG Nandou, LI Tao, et al. Propagation investigation of hydraulic fractures for shales considering improved hydro-mechanical coupling algorithm based on PFC software[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3545-3560. | |
[6] |
ZHAO H F, CHEN H, LIU G H, et al. New insight into mechanisms of fracture network generation in shale gas reservoir[J]. Journal of Petroleum Science and Engineering, 2013, 110: 193-198.
doi: 10.1016/j.petrol.2013.08.046 |
[7] | 许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4): 523-528. |
XU Dan, HU Ruilin, GAO Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528. | |
[8] |
ZOU J P, JIAO Y Y, TAN F, et al. Complex hydraulic-fracture-network propagation in a naturally fractured reservoir[J]. Computers and Geotechnics, 2021, 135: 104165.
doi: 10.1016/j.compgeo.2021.104165 |
[9] | SAHAI R, MOGHANLOO R G. Proppant transport in complex fracture networks: A review[J]. Journal of Petroleum Science and Engineering, 2019, 182: 1-16. |
[10] |
TONG S Y, MOHANTY K K. Proppant transport study in fractures with intersections[J]. Fuel, 2016, 181: 463-477.
doi: 10.1016/j.fuel.2016.04.144 |
[11] |
GUO T K, ZHANG S C, GAO J, et al. Experimental study of fracture permeability for stimulated reservoir volume(SRV) in shale formation[J]. Transport in Porous Media, 2013, 98(3): 525-542.
doi: 10.1007/s11242-013-0157-7 |
[12] | 邹雨时, 张士诚, 马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程, 2013, 13(18): 5152-5157. |
ZOU Yushi, ZHANG Shicheng, MA Xinfang. Study on formation conditions and conductivity of shale fractured shear fractures[J]. Science Technology and Engineering, 2013, 13(18): 5152-5157. | |
[13] | 苟兴豪. 页岩自支撑裂缝导流能力模型研究[D]. 成都: 西南石油大学, 2017. |
GOU Xinghao. Research on numerical method for unpropped fracture conductivity of shale[D]. Chengdu: Southwest Petroleum University, 2017. | |
[14] | LIU K R, SHENG J J. Experimental study of the effect of water-shale interaction on fracture generation and permeability change in shales under stress anisotropy[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 11-15. |
[15] |
ZHOU T, ZHANG S C, YANG L, et al. Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 893-905.
doi: 10.1016/j.jngse.2016.10.036 |
[16] | JAVANMARD H, EBIGBO A, WALSH S, et al. No-flow fraction(NFF) permeability model for rough fractures under normal stress[J]. Water Resources Research, 2021, 57(3): 1-19. |
[17] |
KLING T, SCHWARZ J O, WENDLER F, et al. Fracture flow due to hydrothermally induced quartz growth[J]. Advances in Water Resources, 2017, 107: 93-107.
doi: 10.1016/j.advwatres.2017.06.011 |
[18] |
XIE L Z, GAO C, REN L, et al. Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations[J]. Environmental Earth Sciences, 2015, 73(11): 7061-7074.
doi: 10.1007/s12665-015-4256-3 |
[19] | ZIMMERMAN R W, BODVARSSON G S. Hydraulic conductivity of rock fractures[J]. Transport in Porous Media, 1996, 23(1): 1-30. |
[20] |
WANG L C, CARDNAS M B. Development of an empirical model relating permeability and specific stiffness for rough fractures from numerical deformation experiments[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 4977-4989.
doi: 10.1002/jgrb.v121.7 |
[21] |
LEE H S, CHO T F. Hydralic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 299-318.
doi: 10.1007/s00603-002-0028-y |
[22] | HOPKINS D L. The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 175-202. |
[23] |
PYRAK-NOLTE L J, MORRIS J P. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 245-262.
doi: 10.1016/S1365-1609(99)00104-5 |
[24] |
PETROVITCH C L, PYRAK-NOLTE L J, NOLTE D D. Combined scaling of fluid flow and seismic stiffness in single fractures[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1613-1623.
doi: 10.1007/s00603-014-0591-z |
[25] |
KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824.
doi: 10.1007/s00603-018-1498-x |
[26] |
SUTERA S P, SKALAK R. The history of Poiseuille’s law[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20.
doi: 10.1146/fluid.1993.25.issue-1 |
[27] |
GONG Y B, SEDGHI M, PIRI M. Dynamic pore-scale modeling of residual trapping following imbibition in a rough-walled fracture[J]. Transport in Porous Media, 2021, 140(1): 143-179.
doi: 10.1007/s11242-021-01606-1 |
[28] |
WITHERSPOON P A, WANG J, IWAI K, et al. Validity of cubic law for fluid-flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016-1024.
doi: 10.1029/WR016i006p01016 |
[29] | 李新岭. 数字裂缝建模及渗流属性计算研究[D]. 成都: 电子科技大学, 2020. |
LI Xinling. Research on digital fracture modeling and seepage property calculation[D]. Chengdu: University of Electronic Science and Technology of China, 2020. |
[1] | MA Daixin,REN Xianjun,ZHAO Mifu,HAN Jiaoyan,LIU Yuhu. Theories, technologies and practices of exploration and development of volcanic gas reservoirs: A case study of Cretaceous volcanic rocks in Songnan fault depression [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 167-175. |
[2] | LI Ning,MIAO He,CAO Kaifang. Prediction of volcanic fractures based on prestack azimuthal anisotropy: A case study of LFS area in southern Songliao Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 197-206. |
[3] | CHEN Hongcai, LI Zhaorui. Seismic prediction technology for thin sandstone reservoir of Dainan Formation in Majiazui Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 108-116. |
[4] | ZHANG Lianfeng,ZHANG Yilin,GUO Huanhuan,LI Hongsheng,LI Junjie,LIANG Limei,LI Wenjing,HU Shukui. Development adjustment technology of extending life cycle for nearly-abandoned reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 124-132. |
[5] | REN Hong,LI Weiqi,GUO Zhongchun,YANG Xiaoteng,XU Jian,WANG Xiao. Dynamic quantitative characterization and automatic identification of the buried hill reservoir types in Yakela block [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 789-800. |
[6] | CUI Yudong, LU Cheng, GUAN Ziyue, LUO Wanjing, TENG Bailu, MENG Fanpu, PENG Yue. Effects of creep on depressurization-induced gas well productivity in South China Sea natural gas hydrate reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 809-818. |
[7] | HE Haiyan, LIU Xianshan, GENG Shaoyang, SUN Junchang, SUN Yanchun, JIA Qian. Numerical simulation of UGS facilities rebuilt from oil reservoirs based on the coupling of seepage and temperature fields [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 819-826. |
[8] | XU Yandong, TAO Shan, HE Hui, WAN Xiaoyong, ZOU Ning, YUAN Hongfei. Well test model of vertical double-hole channeling considering gravity [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 827-833. |
[9] | YAN Lini, ZHU Hongquan, YE Sujuan, ZHU Li. Origin of “cake-like” fractures and its significance for gas exploration in the second member of Xujiahe Formation of Xinchang structural belt [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 559-568. |
[10] | ZHANG Zhuang, ZHANG Shunli, HE Xiubin, XIE Dan, LIU Yanhua. Development characteristics of fractures in the second member of Xujiahe Formation in Hexingchang Gas Field, western Sichuan Depression and their main control factors of formation: A case study of Hexingchang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 581-590. |
[11] | LI Jingchang, LU Ting, NIE Haikuan, FENG Dongjun, DU Wei, SUN Chuanxiang, LI Wangpeng. Confidence evaluation of fractures seismic detection in shale gas formations on WY23 Pad in Weirong [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 614-626. |
[12] | CUI Chuanzhi, LI Huailiang, WU Zhongwei, ZHANG Chuanbao, LI Hongbo, ZHANG Yinghua, ZHENG Wenkuan. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 686-694. |
[13] | SHI Leiting, ZHAO Qiming, REN Zhenyu, ZHU Shijie, ZHU Shanshan. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 424-432. |
[14] | MENG Wenhui, ZHANG Wen, WANG Boyang, HAO Shuai, WANG Zebin, PAN Wujie. Analysis of characteristics of coal fine production and its influence factors in Baode block [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 441-450. |
[15] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
|