Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (1): 100-107.doi: 10.13809/j.cnki.cn32-1825/te.2023.01.011
• Engineering Process • Previous Articles Next Articles
HOU Mengru(),LIANG Bing,SUN Weiji(),LIU Qi,ZHAO Hang
Received:
2021-10-26
Online:
2023-01-30
Published:
2023-02-26
Contact:
SUN Weiji
E-mail:hmr2022114@163.com
CLC Number:
Mengru HOU,Bing LIANG,Weiji SUN, et al. Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing[J]. Reservoir Evaluation and Development, 2023, 13(1): 100-107.
[1] |
何骁, 吴建发, 雍锐, 等. 四川盆地长宁——威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(2): 259-272.
doi: 10.7623/syxb202102010 |
HE Xiao, WU Jianfa, YONG Rui, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in changning-Weiyuan block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 259-272.
doi: 10.7623/syxb202102010 |
|
[2] | 李庆辉, 李少轩, 刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3): 130-138. |
LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing reformation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130-138. | |
[3] | 张树翠, 孙可明. 储层非均质性和各向异性对水力压裂裂纹扩展的影响[J]. 特种油气藏, 2019, 26(2): 96-100. |
ZHANG Shucui, SUN Keming. The influence of reservoir heterogeneity and anisotropy on hydraulic fracture propagation[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 96-100. | |
[4] | 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3): 48-55. |
CHENG Wanli, DENG Zhengbin, LIU Zhihong, et al. Research progress in interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 48-55. | |
[5] |
CHU L, LUO L, FWA T F. Effects of aggregate mineral surface anisotropy on asphalt-aggregate interfacial bonding using molecular dynamics (MD) simulation[J]. Construction and Building Materials, 2019, 225 : 1-12.
doi: 10.1016/j.conbuildmat.2019.07.178 |
[6] | 梁冰, 岳鹭飞, 孙维吉. 页岩矿物组分对裂缝扩展影响的数值模拟分析[J]. 海相油气地质, 2019, 24(4): 97-101. |
LIANG Bing, YUE Lufei, SUN Weiji. The influence of shale mineral composition on crack growth:numerical simulation[J]. Marine Origin Petroleum Geology, 2019, 24(4): 97-101. | |
[7] | POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. |
[8] | 刘泉声, 甘亮, 吴志军, 等. 基于零厚度黏聚力单元的水力压裂裂隙空间分布影响分析[J]. 煤炭学报, 2018, 43(S2): 393-402. |
LIU Quansheng, GAN Liang, WU Zhijun, et al. Analysis of spatial distribution of cracks caused by hydraulic fracturing based on zero-thickness cohesive elements[J]. Journal of China Coal Society, 2018, 43(S2): 393-402. | |
[9] |
WU Z J, SUN H, WONG L N Y. A cohesive element-based numerical manifold method for hydraulic fracturing modelling with Voronoi Grains[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2335-2359.
doi: 10.1007/s00603-018-1717-5 |
[10] | 李勇华. 矿物相互作用对岩石单轴抗压强度的影响研究[J]. 人民长江, 2019, 50(6): 198-202. |
LI Yonghua. Effect of mineral interaction on uniaxial compressive strength of rock[J]. Yangtze River, 2019, 50(6): 198-202. | |
[11] | 薛炳, 张广明, 吴恒安, 等. 油井水力压裂的三维数值模拟[J]. 中国科学技术大学学报, 2008, 44(11): 1322-1325. |
XUE Bing, ZHANG Guangming, WU Heng’an, et al. Three-dimensional numerical simulation of hydraulic fracture in oil wells[J]. Journal of University of Science and Technology of China, 2008, 44(11): 1322-1325. | |
[12] | 连志龙, 张劲, 王秀喜, 等. 水力压裂扩展特性的数值模拟研究[J]. 岩土力学, 2009, 30(1): 169-174. |
LIAN Zhilong, ZHANG Jing, WANG Xiuxi, et al. Simulation study of characteristics of hydraulic fracturing propagation[J]. Rock and Soil Mechanics, 2009, 30(1): 169-174. | |
[13] |
张广明, 刘合, 张劲, 等. 油井水力压裂流-固耦合非线性有限元数值模拟[J]. 石油学报, 2009, 30(1): 113-116.
doi: 10.7623/syxb200901024 |
ZHANG Guangming, LIU He, ZHANG Jing, et al. Simulation of hydraulic of oil well based on fluid-solid coupling equation and non-linear finite element[J]. Acta Petrolei Sinica, 2009, 30(1): 113-116.
doi: 10.7623/syxb200901024 |
|
[14] | 董平川, 徐小荷. 储层流固耦合的数学模型及其有限元方程[J]. 石油学报, 1998, 19(1): 74-80. |
DONG Pingchuan, XU Xiaohe. The fully coupled mathematical of the fluid-solid in an oil reservoir and its finite element equations[J]. Acta Petrolei Sinica, 1998, 19(1): 74-80. | |
[15] |
DEAN R H, SCHMIDT J H. Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator[J]. SPE Journal, 2009, 14(4): 707-714.
doi: 10.2118/116470-PA |
[16] |
HAGOORT J, WEATHERILL B D, SETTARI A. Modeling the propagation of waterflood-induced hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1980, 20(4): 293-303.
doi: 10.2118/7412-PA |
[17] | 张晨晨, 王玉满, 董大忠, 等. 川南长宁地区五峰组—龙马溪组页岩脆性特征[J]. 天然气地球科学, 2016, 27(9): 1629-1639. |
ZHANG Chenchen, WANG Yuman, DONG Dazhong, et al. Brittleness characteristics of Wufeng-Longmaxi shale in Changning region, Southern Sichuan, China[J]. Natural Gas Geoscience, 2016, 27(9): 1629-1639. | |
[18] | 李文浩, 卢双舫, 王民, 等. 基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J]. 石油与天然气地质, 2022, 43(6): 1497-1504. |
Li Wenhao, Lu Shuangfang, Wang Min, et al. Quantitative characterization of micro heterogeneity of tight reservoirs by large-view FE-SEM splicing technology[J]. Oil & Gas Geology, 2022, 43(6): 1497-1504. | |
[19] | LIU Q, LIANG B, SUN W J, et al. Experimental study on the difference of shale mechanical properties[J]. Advances in Civil Engineering, 2021. |
[20] | RAMSAY J G. Folding and fracturing of rocks[M]. London: Mc-Graw-Hill, 1967. |
[21] | 卞康, 陈彦安, 刘建, 等. 不同吸水时间下页岩卸荷破坏特征的颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367. |
BIAN Kang, CHEN Yan’an, LIU Jian, et al. Particle discrete element study of shale unloading damage characteristics under different water absorption times[J]. Geotechnics, 2020, 41(S1): 355-367. | |
[22] | 隋丽丽, 杨永明, 杨文光, 等. 胜利油田东营凹陷区页岩可压裂性评价[J]. 煤炭学报, 2015, 40(7): 1588-1594. |
SUI Lili, YANG Yongming, YANG Wenguang, et al. Evaluation of shale fracturing ability in Dongying Sag of Shengli Oilfield[J]. Acta China Coal Society, 2015, 40(7): 1588-1594. | |
[23] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
doi: 10.1557/JMR.1992.1564 |
[24] |
ELIYAHU M, EMMANUEL S, DAY-STIRRAT R J, et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59: 294-304.
doi: 10.1016/j.marpetgeo.2014.09.007 |
[1] | YU Wenduan, GAO Yuqiao, ZAN Ling, MA Xiaodong, YU Qilin, LI Zhipeng, ZHANG Zhihuan. Distribution of oil bearing and shale oil-rich strata in the second member of Funing Formation in Qintong Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 688-698. |
[2] | WANG Xinqian, YU Wenduan, MA Xiaodong, ZHOU Tao, TAI Hao, CUI Qinyu, DENG Kong, LU Yongchao, LIU Zhanhong. Identification and application of shale lithofacies based on conventional logging curves: A case study of the second member of Funing Formation in Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 699-706. |
[3] | ZHANG Fei, LI Qiuzheng, JIANG Aming, DENG Ci. Application of shale oil 2D NMR logging evaluation in Huazhuang area of Gaoyou Sag [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 707-713. |
[4] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[5] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[6] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[7] | LIU Xugang, LI Guofeng, LI Lei, WANG Ruixia, FANG Yanming. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763. |
[8] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[9] | WANG Weiheng, GUO Xin, ZHANG Bin, XIA Weiwei. Development and performance evaluation of fracturing-displacement agent(HDFD) for shale oil: A case study of the second member of Funing Formation, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 771-778. |
[10] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[11] | CHEN Xiang, WANG Guan, LIU Pingli, DU Juan, WANG Ming, CHEN Weihua, LI Jinlong, LIU Jinming, LIU Fei. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576. |
[12] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[13] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[14] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[15] | GAI Changcheng,ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646. |
|