Petroleum Reservoir Evaluation and Development ›› 2025, Vol. 15 ›› Issue (1): 142-151.doi: 10.13809/j.cnki.cn32-1825/te.2025.01.018
• Engineering Techniques • Previous Articles Next Articles
CHEN Weiming1(), JIANG Lin2, LUO Tongtong3, LI Yue2, WANG Jianhua3
Received:
2024-03-20
Online:
2025-01-26
Published:
2025-02-26
CLC Number:
CHEN Weiming,JIANG Lin,LUO Tongtong, et al. Research on deep learning-based fracture network inversion method for shale gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 142-151.
Table 1
Statistical data of characteristic parameters"
数据类型 | 平均值 | 最大值 | 最小值 |
---|---|---|---|
前置液单位体积上升压力/ [(MPa·min)/m3] | 1.24 | 2.87 | 0.37 |
破裂压力/MPa | 99.60 | 114.52 | 88.04 |
前置液压力下降斜率/(MPa/min) | -4.30 | -1.32 | -7.15 |
前置液下降压差/MPa | 6.46 | 29.52 | 1.25 |
压裂液排量/(m3/min) | 17.42 | 19.00 | 15.63 |
延伸压力/MPa | 98.18 | 104.00 | 93.91 |
压裂时间/min | 167.60 | 235.01 | 88.93 |
总砂量/m3 | 337.46 | 440.44 | 320.11 |
暂堵生效瞬时上升压力/MPa | 8.17 | 14.69 | 2.36 |
暂堵前后平均上升压力/MPa | 5.95 | 16.34 | 2.31 |
低黏占比/% | 0.95 | 1.00 | 0.95 |
波动周期/min | 2.88 | 5.27 | 1.19 |
波动振幅/MPa | 2.55 | 4.78 | 1.18 |
波动次数 | 2.26 | 4.00 | 1.00 |
替挤峰值/MPa | 105.61 | 113.05 | 93.62 |
停泵斜率 | -7.04 | -1.96 | -14.10 |
裂缝闭合压力/MPa | 71.77 | 81.18 | 65.02 |
拟线性流斜率 | -0.39 | -0.01 | -0.85 |
缝网长度/m | 399.17 | 475.00 | 284.00 |
缝网宽度/m | 99.22 | 125.00 | 80.00 |
缝网高度/m | 93.91 | 124.00 | 70.00 |
缝网体积/104 m3 | 296.12 | 505.00 | 243.25 |
Table 4
Training and prediction results for fracture network length, width, and height models"
评价指标 | 缝网长度 模型 | 缝网宽度 模型 | 缝网高度 模型 |
---|---|---|---|
训练集平均相对误差/% | 6.68 | 7.84 | 9.11 |
预测集平均相对误差/% | 8.19 | 9.72 | 10.61 |
训练集平均绝对误差/m | 27.61 | 5.69 | 4.86 |
预测集平均绝对误差/m | 33.89 | 7.43 | 6.09 |
训练集均方根误差/m | 37.09 | 7.40 | 7.44 |
预测集均方根误差/m | 43.03 | 9.29 | 7.37 |
训练集相对误差 大于10%的测点比例/% | 21.65 | 31.80 | 34.62 |
预测集相对误差 大于10%的测点比例/% | 37.67 | 40.16 | 52.48 |
训练集相对误差 大于15%的测点比例/% | 11.87 | 13.32 | 21.03 |
预测集相对误差 大于15%的测点比例/% | 12.14 | 25.26 | 26.95 |
Table 5
Training and prediction results for fracture network volume model"
评价指标 | 缝网体积模型 |
---|---|
训练集平均相对误差/% | 11.39 |
预测集平均相对误差/% | 13.56 |
训练集平均绝对误差/104 m3 | 9.51 |
预测集平均绝对误差/104 m3 | 10.74 |
训练集均方根误差/104 m3 | 12.09 |
预测集均方根误差/104 m3 | 12.02 |
训练集相对误差大于10%的测点比例/% | 39.27 |
预测集相对误差大于10%的测点比例/% | 57.13 |
训练集相对误差大于15%的测点比例/% | 25.68 |
预测集相对误差大于15%的测点比例/% | 31.60 |
[1] | 蔡勋育, 周德华, 赵培荣, 等. 中国石化深层、常压页岩气勘探开发进展与展望[J]. 石油实验地质, 2023, 45(6): 1039-1049. |
CAI Xunyu, ZHOU Dehua, ZHAO Peirong, et al. Development progress and outlook of deep and normal pressure shale gas of SINOPEC[J]. Petroleum Geology & Experiment, 2023, 45(6): 1039-1049. | |
[2] | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
[3] | 郭旭升, 胡东风, 俞凌杰, 等. 页岩自封闭性与页岩气保存的微观机理研究[J]. 石油实验地质, 2023, 45(5): 821-831. |
GUO Xusheng, HU Dongfeng, YU Lingjie, et al. Study on the micro mechanism of shale self-sealing and shale gas preservation[J]. Petroleum Geology & Experiment, 2023, 45(5): 821-831. | |
[4] | 李敏, 刘雅利, 冯动军, 等. 中国海相页岩气资源潜力及未来勘探方向[J]. 石油实验地质, 2023, 45(6): 1097-1108. |
LI Min, LIU Yali, FENG Dongjun, et al. Potential and future exploration direction of marine shale gas resources in China[J]. Petroleum Geology & Experiment, 2023, 45(6): 1097-1108. | |
[5] | 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14. |
ZHAO Jinzhou, REN Lan, SHEN Pin, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14. | |
[6] | 杨永华, 宋燕高, 王兴文, 等. 威荣页岩气田压裂实践与认识[J]. 石油实验地质, 2023, 45(6): 1143-1150. |
YANG Yonghua, SONG Yangao, WANG Xingwen, et al. Practice and understanding of fracturing in Weirong shale gas field[J]. Petroleum Geology & Experiment, 2023, 45(6): 1143-1150. | |
[7] | 郭建春, 赵志红, 路千里, 等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业, 2021, 41(1): 102-117. |
GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102-117. | |
[8] | 杨学锋, 夏自强, 赵圣贤, 等. 深层页岩气水平井天然裂缝发育特征及其对精细开发的启示: 以川南泸州区块五峰组—龙马溪组为例[J]. 石油实验地质, 2024, 46(4): 735-747. |
YANG Xuefeng, XIA Ziqiang, ZHAO Shengxian, et al. Development characteristics of natural fractures in horizontal wells for deep shale gas and their implications for enhanced development: a case study of Wufeng-Longmaxi formations in Luzhou area, southern Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(4): 735-747. | |
[9] | ZHAO Haifeng, WANG Xiaohua, LIU Zhiyuan. Experimental investigation of hydraulic sand fracturing on fracture propagation under the influence of coal macrolithotypes in Hancheng Block, China[J]. Journal of Petroleum Science and Engineering, 2019, 175: 60-71. |
[10] | 赵金洲, 付永强, 王振华, 等. 页岩气水平井缝网压裂施工压力曲线的诊断识别方法[J]. 天然气工业, 2022, 42(2): 11-19. |
ZHAO Jinzhou, FU Yongqiang, WANG Zhenhua, et al. Study on diagnosis model of shale gas fracture network fracturing operation pressure curves[J]. Natural Gas Industry, 2022, 42(2): 11-19. | |
[11] | 王益民, 李继庆, 万云强, 等. 基于返排数据计算页岩气井压裂有效体积的方法及应用[J]. 石油实验地质, 2023, 45(6): 1215-1220. |
WANG Yimin, LI Jiqing, WAN Yunqiang, et al. Method of estimating the effective fracture volume of shale gas wells using flowback data and its application[J]. Petroleum Geology & Experiment, 2023, 45(6): 1215-1220. | |
[12] | 李宪文, 赵振峰, 李喆, 等. 随机分形压裂水平井缝网参数反演方法[J]. 断块油气田, 2019, 26(2): 205-209. |
LI Xianwen, ZHAO Zhenfeng, LI Zhe, et al. Stochastic fractal model for fracture network parameter inversion of fracturing horizontal well[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 205-209. | |
[13] | 易新民, 唐雪萍, 梁涛, 等. 利用测井资料预测判断水力压裂裂缝高度[J]. 西南石油大学学报(自然科学版), 2009, 31(5): 21-24. |
YI Xinmin, TANG Xueping, LIANG Tao, et al. Prediction and assessment of fracture height of hydraulic fracturing with logging date[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(5): 21-24. | |
[14] | LI H T, LUO H W, XIANG Y W, et al. DTS-based hydraulic fracture identification and production profile interpretation method for horizontal shale gas wells[J]. Natural Gas Industry B, 2021, 8(5): 494-504. |
[15] | 尹丛彬, 李彦超, 王素兵, 等. 页岩压裂裂缝网络预测方法及其应用[J]. 天然气工业, 2017, 37(4): 60-68. |
YIN Congbin, LI Yanchao, WANG Subing, et al. Methodology of hydraulic fracture network prediction in shale reservoirs and its application[J]. Natural Gas Industry, 2017, 37(4): 60-68. | |
[16] | 朱昭颖, 戴邓仅, 鲁伍支, 等. 基于水击效应的水平井压裂裂缝数值诊断[J]. 计算物理, 2023, 40(6): 735-741. |
ZHU Zhaoying, DAI Dengjin, LU Wuzhi, et al. Numerical fracture diagnosis method for horizontal well fracturing based on water hammer[J]. Chinese Journal of Computational Physics, 2023, 40(6): 735-741. | |
[17] | 赵玉龙, 崔乾晨, 高上钧, 等. 基于停泵压降数据的页岩气井单段裂缝参数反演: 以长宁N209井区页岩气井为例[J]. 深圳大学学报(理工版), 2024, 41(1): 22-32. |
ZHAO Yulong, CUI Qianchen, GAO Shangyun, et al. The inversion of the single-stage hydraulic fracture parameters for shale gas well based on the shut-in pressure-drop data: A case of shale gas well in Changning N209 well area[J]. Journal of Shenzhen University(Science and Engineering), 2024, 41(1): 22-32. | |
[18] | 于豪, 黄家强, 兰雪梅, 等. 川西北双鱼石地区栖霞组地震资料优化处理及裂缝预测技术应用[J]. 科学技术与工程, 2020, 20(22): 8933-8942. |
YU Hao, HUANG Jiaqiang, LAN Xuemei, et al. Application of seismic data optimal processing and fracture prediction in the Shuangyushi Block, Northwest Sichuan[J]. Science Technology and Engineering, 2020, 20(22): 8933-8942. | |
[19] | ZHANG D X, CHEN Y T, MENG J, et al. Synthetic well logs generation via Recurrent Neural Networks[J]. Petroleum Exploration and Development, 2018, 45(4): 629-639. |
[20] | 冯明洁. 含天然裂缝页岩水力压裂缝网的形貌演化及神经网络预测模型研究[D]. 重庆: 重庆大学, 2022. |
FENG Mingjie. Study on morphology evolution and neural network prediction model of hydraulic fracture network in shale with natural fracture[D]. Chongqing: Chongqing University, 2022. | |
[21] | 常德宽, 雍学善, 王一惠, 等. 基于深度卷积神经网络的地震数据断层识别方法[J]. 石油地球物理勘探, 2021, 56(1): 1-8. |
CHANG Dekuan, YONG Xueshan, WANG Yihui, et al. Seismic fault interpretation based on deep convolutional neural networks[J]. Oil Geophysical Prospecting, 2021, 56(1): 1-8. | |
[22] | ZHANG M Z, LIU Z Y, JIANG Q, et al. Influence of natural caves on hydraulic fracturing pressure curves: Numerical modeling and ANNs[J]. Arabian Journal of Geosciences, 2021, 14(20): 1-22. |
[23] | 刘宝锋. 基于人工神经网络的超深井储层敏感性预测[D]. 青岛: 中国石油大学(华东), 2009. |
LIU Baofeng. The sensitivity prediction of the ultra-deep reservoir based on artificial neural network[D]. Qingdao: China University of Petroleum (East China), 2009. | |
[24] | LIU Y Y, MA X H, ZHANG X W, et al. A deep-learning-based prediction method of the estimated ultimate recovery(EUR) of shale gas wells[J]. Petroleum Science, 2021, 18(5): 1450-1464. |
[25] | 王兴文, 缪尉杰, 何新星, 等. 川南威荣气田深层页岩气工程技术进展[J]. 石油实验地质, 2023, 45(6): 1170-1177. |
WANG Xingwen, MIAO Weijie, HE Xinxing, et al. Progress in deep shale gas engineering technology in Weirong gas field in southern Sichuan[J]. Petroleum Geology & Experiment, 2023, 45(6): 1170-1177. | |
[26] | 刘庆. 水平井体积压裂井底净压力计算及分析[D]. 北京: 中国石油大学(北京), 2017. |
LIU Qing. Net pressure calculation and analysis of horizontal well volume fracturing[D]. Beijing: China University of Petroleum(Beijing), 2017. | |
[27] | 卞晓冰, 蒋延学, 贾长贵, 等. 基于施工曲线的页岩气井压后评估新方法[J]. 天然气工业, 2016, 36(2): 60-65. |
BIAN Xiaobing, JIANG Tingxue, JIA Changgui, et al. A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J]. Natural Gas Industry, 2016, 36(2): 60-65. | |
[28] | 彭勇民, 董世雄, 边瑞康, 等. 四川盆地东部页岩气水平井裂缝识别方法及应用[J]. 石油实验地质, 2023, 45(6): 1196-1203. |
PENG Yongmin, DONG Shixiong, BIAN Ruikang, et al. Method for identification of fractures in shale gas horizontal wells in eastern Sichuan Basin and its application[J]. Petroleum Geology & Experiment, 2023, 45(6): 1196-1203. | |
[29] | SACCENTI E, HENDRIKS M H W B, SMILDE A K. Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models[J]. Scientific Reports, 2020, 10(1): 438. |
|