Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (3): 385-392.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.014
• Comprehensive Research • Previous Articles Next Articles
YU Qiannan1(),ZHANG Han1,LI Ning1,TANG Huimin2,LI Chenglong3,WU Zhuolin1,PENG Wei1
Received:
2021-12-20
Online:
2023-06-26
Published:
2023-06-26
CLC Number:
Qiannan YU,Han ZHANG,Ning LI, et al. Development quality evaluation of natural gas hydrate reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 385-392.
Table 1
Sensitivity analysis results of factors of development of natural gas hydrate reservoir"
分类 | 参数 | 符号 | 典型值 | 敏感度 |
---|---|---|---|---|
工程地质参数 | 储层埋深/m | 600 | 1.73 | |
储层资源量/m3 | 2.0×1010 | 9.79 | ||
上覆水深/m | 1 000 | 6.12 | ||
距海岸距离/m | 1 000 | 8.91 | ||
储层倾角/(°) | 10 | 7.85 | ||
储层物性参数 | 原始地层温度/K | 283 | 10.35 | |
原始水合物饱和度 | 0.5 | 5.31 | ||
地层岩石导热系数/[W/(m·K)] | 1 | 2.55 | ||
原始地层压力/MPa | 20 | 1.03 | ||
地层岩石孔隙度 | 0.45 | 0.97 | ||
地层渗透率/ | 2.0 | 9.01 | ||
地层与井底压差/MPa | 2.0 | 5.08 | ||
原始含水饱和度 | 0.5 | 4.65 | ||
地层与井底温差/K | 10 | 3.09 | ||
地层岩石比热容/[J/(kg·K)] | 1 000 | 7.63 | ||
流体性质参数 | 水合物相平衡压力/MPa | 8 | 7.24 | |
水合物比热容/[J/(kg·K)] | 1 900 | 3.88 | ||
水合物分解速率常数/[kg/(m2·Pa·s)] | 3×10-14 | 1.08 | ||
甲烷比热容/[J/(kg·K)] | 2.227×103 | 5.12 | ||
水密度/(kg/m3) | 0.997×103 | 4.07 | ||
甲烷黏度/(mPa·s) | 11×10-3 | 2.75 | ||
气水毛管力/Pa | 2.0×104 | 2.72 | ||
水黏度/(mPa·s) | 2.98 | 1.29 | ||
水比热容/[J/(kg·K)] | 4.2×103 | 9.65 | ||
水合物密度/(kg/m3) | 0.9×103 | 1.56 | ||
水合物导热系数/[W/(m·K)] | 2.3 | 2.24 | ||
水导热系数/[W/(m·K)] | 0.59 | 9.68 | ||
甲烷导热系数/[W/(m·K)] | 0.025 | 3.23 |
Table 2
Score of main control factors for development of natural gas hydrate reservoir"
评 分 | 工程地质参数 | 储层物性参数 | 流体性质参数 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
60 | ﹥900 | ﹤274 | ﹤5 | ﹤0.1 | ﹤0.2 | ﹤0.25 | ﹥2 100 | ﹥10 | ﹤10-16 | |
70 | 600~900 | 274~278 | 5~10 | 0.1~0.3 | 0.2~0.4 | 0.25~0.35 | 1 900~2 000 | 8~10 | 10-16~10-15 | |
80 | 300~600 | 278~283 | 10~20 | 0.3~0.5 | 0.4~1.0 | 0.35~0.45 | 1 800~1 900 | 6~8 | 10-15~10-14 | |
90 | 150~300 | 283~288 | 20~30 | 0.5~0.7 | 1~2 | 0.45~0.55 | 1 700~1 800 | 4~6 | 10-14~10-13 | |
100 | ﹤150 | ﹥288 | ﹥30 | ﹥0.7 | ﹥2 | ﹥0.55 | ﹤1 700 | ﹤4 | ﹥10-13 |
Table 8
Main control factors for development quality evaluation of typical natural gas hydrate reservoir"
天然气水合物藏 | 工程地质参数 | 储层物性参数 | 流体性质参数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Messoyakha | 750 | 282.25 | 7.8 | 0.45 | 0.56 | 0.25 | 1 800 | 6.8 | 2.9×10-14 | ||
Mallik | 950 | 282.95 | 11.2 | 0.40 | 0.89 | 0.35 | 2 000 | 10.2 | 3.7×10-14 | ||
Alaska | 650 | 282.65 | 7.5 | 0.40 | 0.72 | 0.27 | 1 800 | 6.6 | 2.5×10-14 | ||
Nankai Trough | 300 | 283.75 | 13.5 | 0.35 | 1.37 | 0.35 | 2 000 | 10.0 | 1.2×10-13 | ||
神狐 | 150 | 283.15 | 8.9 | 0.30 | 1.58 | 0.38 | 2 000 | 8.5 | 9.8×10-12 |
Table 10
Evaluation results of single factor of typical natural gas hydrate reservoirs"
天然气水合物藏 | 工程地质参数 | 储层物性参数 | 流体性质参数 | 评价结果 Q | 开发品质等级 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Messoyakha | 70 | 80 | 80 | 80 | 80 | 70 | 80 | 80 | 80 | 78.77 | Ⅱ级 | ||
Mallik | 60 | 80 | 70 | 80 | 80 | 80 | 70 | 60 | 80 | 70.61 | Ⅲ级 | ||
Alaska | 70 | 80 | 70 | 80 | 80 | 70 | 80 | 80 | 80 | 76.95 | Ⅱ级 | ||
Nankai Trough | 90 | 90 | 80 | 80 | 90 | 80 | 70 | 70 | 90 | 80.04 | Ⅰ级 | ||
神狐 | 90 | 90 | 70 | 80 | 90 | 80 | 70 | 70 | 100 | 81.63 | Ⅰ级 |
[1] | 魏纳, 白睿玲, 周守为, 等. 碳达峰目标下中国深海天然气水合物开发战略[J]. 天然气工业, 2022, 42(2): 156-165. |
WEI Na, BAI Ruiling, ZHOU Shouwei, et al. China's deepwater gas hydrate development strategies under the goal of carbon peak[J]. Natural Gas Industry, 2022, 42(2): 156-165. | |
[2] |
SAHU C, KUMAR R, SANGWAI J S. Comprehensive review on exploration and drilling techniques for natural gas hydrate reservoirs[J]. Energy & Fuels, 2020, 34(10): 11813-11839.
doi: 10.1021/acs.energyfuels.0c02202 |
[3] | 黄满, 吴亮虹, 宁伏龙, 等. 天然气水合物储层改造研究进展[J]. 天然气工业, 2022, 42(7): 160-174. |
HUANG Man, WU Lianghong, NING Fulong, et al. Research progress in natural gas hydrate reservoir stimulation[J]. Natural Gas Industry, 2022, 42(7): 160-174. | |
[4] |
ZHAO J F, LIU Y L, GUO X W, et al. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization[J]. Applied Energy, 2020, 260(2): 114275.
doi: 10.1016/j.apenergy.2019.114275 |
[5] |
ZHAO J F, ZHU Z H, SONG Y C, et al. Analyzing the process of gas production for natural gas hydrate using depressurization[J]. Applied Energy, 2015, 142: 125-134.
doi: 10.1016/j.apenergy.2014.12.071 |
[6] |
LI X S, XU C G, ZHANG Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016, 172: 286-322.
doi: 10.1016/j.apenergy.2016.03.101 |
[7] |
LI G, MORIDIS G J, KENI Z, et al. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu area of South China Sea[J]. Energy & Fuels, 2010, 24(11): 6018-6033.
doi: 10.1021/ef100930m |
[8] | 吴能友, 黄丽, 苏正, 等. 海洋天然气水合物开采潜力地质评价指标研究: 理论与方法[J]. 天然气工业, 2013, 33(7): 11-17. |
WU Nengyou, HUANG Li, SU Zheng, et al. A study of geological evaluation indicators for the exploitation potential of marine natural gas hydrates: Theory and methodology[J]. Natural Gas Industry, 2013, 33(7): 11-17. | |
[9] |
ZATSEPINA O, POOLADI-DARVISH M, HONG H. Behavior of gas production from type Ⅲ hydrate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2011, 3(3): 496-504.
doi: 10.1016/j.jngse.2011.05.005 |
[10] | 业渝光. 天然气水合物实验探测和测试技术[J]. 海洋地质前沿, 2011, 27(6): 37-43. |
YE Yuguang. Detection and testing techniques in gas hydrate experiments[J]. Marine Geology Frontiers, 2011, 27(6): 37-43. | |
[11] | 王英梅, 张梦迪, 吴青柏, 等. 水合物一次分解压力对记忆效应的影响[J]. 石油与天然气化工, 2021, 50(4): 66-72. |
WANG Yingmei, ZHANG Mengdi, WU Qingbai, et al. Influence of primary decomposition pressure of hydrate on memory effect[J]. Chemical Engineering of Oil & Gas, 2021, 50(4): 66-72. | |
[12] | 刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质, 2021, 41(5): 44-57. |
LIU Changling, SUN Yunbao. Characteristics of marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 44-57. | |
[13] | 罗东坤, 汪华. 运用模糊综合评价法评估油气开发投资风险[J]. 国际石油经济, 2004, 12(2): 38-40. |
LUO Dongkun, WANG Hua. Assessment of investment risk in oil and gas development using fuzzy integrated evaluation method[J]. International Petroleum Economics, 2004, 12(2): 38-40. | |
[14] | 于倩男, 刘义坤, 于洋. 基于层次分析的精控压裂井层模糊评价研究[J]. 数学的实践与认识, 2018, 48(3): 107-114. |
YU Qiannan, LIU Yikun, YU Yang. Research on fuzzy comprehensive evaluation of fine controlled fracturing wells and layers based on analytical hierarchy process[J]. Mathematics in Practice and Theory, 2018, 48(3): 107-114. | |
[15] | 袁永真, 裴发根, 张鹏辉, 等. 利用模糊统计法进行天然气水合物靶区预测—以青海木里地区为例[J]. 物探与化探, 2017, 41(6): 1281-1286. |
YUAN Yongzhen, PEI Fagen, ZHANG PengHui, et al. Fuzzy statistic method used to prediction of gas hydrate target area: A case study of Muli area in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2017, 41(6): 1281-1286. | |
[16] | 魏纳, 周守为, 崔振军, 等. 南海北部天然气水合物物性参数评价与分类体系构建[J]. 天然气工业, 2020, 40(8): 59-67. |
WEI Na, ZHOU Shouwei, CUI Zhenjun, et al. Evaluation of physical parameters and construction of a parameter classification system for natural gas hydrate in the northern South China Sea[J]. Natural Gas Industry, 2020, 40(8): 59-67. | |
[17] | 刘振坤, 王晖, 王盘根, 等. 加拿大油砂SAGD开发储量品质评价关键参数研究[J]. 海洋地质前沿, 2019, 35(12): 55-61. |
LIU Zhenkun, WANG Hui, WANG Pangen, et al. Key parameters of reserve quality evaluation for oil sand SAGD development in Canada[J]. Marine Geology Frontiers, 2019, 35(12): 55-61. | |
[18] | 李淑霞, 刘亚平, 陈月明, 等. 天然气水合物藏品质评价的多级模糊综合评价[J]. 现代地质, 2010, 24(3): 463-466. |
LI Shuxia, LIU Yaping, CHEN Yueming, et al. Evaluating the quality of natural gas hydrate reservoir by hierarchy fuzzy assessment[J]. Geoscience, 2010, 24(3): 463-466. | |
[19] |
徐立涛, 何玉林, 石万忠, 等. 琼东南盆地深水区天然气水合物成藏主控因素及模式[J]. 石油学报, 2021, 42(5):598-610.
doi: 10.7623/syxb202105004 |
XU Litao, HE Yulin, SHI Wanzhong, et al. Main controlling factors and patterns of gas hydrate accumulation in the deep water area of Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2021, 42(5): 598-610.
doi: 10.7623/syxb202105004 |
|
[20] |
史斗, 郑军卫. 世界天然气水合物研究开发现状和前景[J]. 地球科学进展, 1999, 14(4): 330-339.
doi: 10.11867/j.issn.1001-8166.1999.04.0330 |
SHI Dou, ZHENG Junwei. The status and prospects of research and exploitation of natural gas hydrate in the world[J]. Advances in Earth Science, 1999, 14(4): 330-339.
doi: 10.11867/j.issn.1001-8166.1999.04.0330 |
|
[21] | COLLETT T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992. |
[22] | MORIDIS G J, COLLETT T S, BOSWELL R, et al. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential[J]. SPE Reservoir Evaluation & Engineering, 2009, 12(5): 745-771. |
[23] | 刘建辉, 李占东, 赵佳彬. 神狐海域天然气水合物研究新进展[J]. 矿产与地质, 2021, 35(3): 596-602. |
LIU Jianhui, LI Zhandong, ZHAO Jiabin. New progress in the study of natural gas hydrate in Shenhu area[J]. Mineral Resources and Geology, 2021, 35(3): 596-602. | |
[24] | 付强, 周守为, 李清平. 天然气水合物资源勘探与试采技术研究现状与发展战略[J]. 中国工程科学, 2015, 17(9): 123-132. |
FU Qiang, ZHOU Shouwei, LI Qingping. Research status and development strategy of gas hydrate resource exploration and development technologies[J]. Engineering Science, 2015, 17(9): 123-132. |
|