Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (3): 379-384.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.013
• Comprehensive Research • Previous Articles Next Articles
CHEN Xiangyu1(),LI Jianyuan2,CHEN Yu3
Received:
2021-11-15
Online:
2023-06-26
Published:
2023-06-26
CLC Number:
Xiangyu CHEN,Jianyuan LI,Yu CHEN. Heat transfer of steam cavity edge in SAGD process considering reservoir physical property changes[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 379-384.
[1] | NASR T N, BEAULIEU G, GOLBECK H, et al. Novel expanding solvent-SAGD process “ES-SAGD”[J]. Journal of Canadian Petroleum Technology, 2003, 42(1): 13-16. |
[2] |
JIA X, QU T, CHEN H, et al. Transient convective heat transfer in a steam-assisted gravity drainage(SAGD) process[J]. Fuel, 2019, 247: 315-323.
doi: 10.1016/j.fuel.2019.03.022 |
[3] | YU K Z, ZHAO G. Modeling of heat transfer coupled with fluid flow for temperature transient analysis during SAGD process[C]// Paper SPE-181208-MS presented at the SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference, Lima, Peru, October 2016. |
[4] |
JI D, ZHONG H, DONG M, et al. A model to estimate heat efficiency in SAGD by condensate and initial water flow in oil sands[J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13147-13156.
doi: 10.1021/acs.iecr.6b03550 |
[5] |
CHENG L S, HAO G, HUANG S J. A comprehensive mathematical model for estimating oil drainage rate in SAGD process considering wellbore/formation coupling effect[J]. Heat Mass Transfer, 2017, 53: 1777-1795.
doi: 10.1007/s00231-016-1935-x |
[6] | ZHANG Z X, LIU H Q, DONG X H, et al. A new mathematical model to understand the convective heat transfer mechanism in steam-assisted gravity drainage process[J]. Journal of Thermal Science and Engineering Applications, 2017, 10(1): 1287. |
[7] |
MASSOUDI M. Mathematical modeling of fluid flow and heat transfer in petroleum industries and geothermal applications 2020[J]. Energies, 2021, 14(16): 1-4.
doi: 10.3390/en14010001 |
[8] | BUTLER R M. Thermal recovery of oil and bitumen[M]. Englewood Cliffs: Prentice Hall, 1991. |
[9] |
BUTLER R M. Steam-assisted gravity drainage: concept, development, performance and future[J]. Journal of Canadian Petroleum Technology, 1994, 33(2): 44-50.
doi: 10.2118/94-02-05 |
[10] | 何亮亮. 超稠油SAGD蒸汽腔扩展研究[D]. 成都: 西南石油大学, 2018. |
HE Liangliang. Research on steam chamber expansion of SAGD in ultra-heavy oil reservoir[D]. Chengdu: Southwest Petroleum University, 2018. | |
[11] | PINTO H, WANG X, GATES I D, et al. Insights on heat transfer at the top of steam chambers in SAGD[J]. Journal of Heat Transfer: Transactions of the ASME, 2017, 139(4). |
[12] | 余洋, 刘尚奇, 刘洋. 蒸汽辅助重力泄油开发过程及机理研究综述[J]. 科学技术与工程, 2021, 21(12): 4744-4751. |
YU Yang, LIU Shangqi, LIU Yang. Review of research on recovery process and mechanism of steam-assisted gravity drainage[J]. Science Technology and Engineering, 2021, 21(12): 4744-4751. | |
[13] | ZHANG Z X, LIU H Q, DONG X H, et al. Unified model of heat transfer in the multiphase flow in steam assisted gravity drainage process[J]. Journal of Petroleum Science & Engineering, 2017, 157: 875-883. |
[14] | EDMUNDS N, GITTINS S. Effective application of steam assisted gravity drainage of bitumen to Long horizontal well pairs[J]. Journal of Canadian Petroleum Technology, 1993, 32(6): 49-55. |
[15] | 刘牧心. 超稠油SAGD开发蒸汽腔前缘温度分布研究[J]. 科学技术与工程, 2015, 15(3): 71-74. |
LIU Muxin. Temperature distribution ahead of the steam chamber in SAGD[J]. Science Technology and Engineering, 2015, 15(3): 71-74. | |
[16] | 陈雄, 贾永禄, 桑林翔, 等. 一种确定蒸汽重力采油(SAGD)蒸汽腔前缘发育速度及范围的新方法[J]. 油气藏评价与开发, 2016, 6(1): 36-39. |
CHEN Xiong, JIA Yonglu, SANG Linxiang, et al. A new method of calculating velocity and scope of steam chamber for SAGD[J]. Reservoir Evaluation and Development, 2016, 6(1): 36-39. | |
[17] | 范杰, 李相方. 蒸汽辅助重力泄油蒸汽腔前缘传热模型研究[J]. 科学技术与工程, 2016, 16(3): 42-47. |
FAN Jie, LI Xiangfang. The research of heat transfer on the front of steam chamber for steam assisted gravity drainage[J]. Science Technology and Engineering, 2016, 16(3): 42-47. | |
[18] | 谷宇峰, 张道勇, 鲍志东. 利用混合模型CRBM-PSO-XGBoost识别致密砂岩储层岩性[J]. 石油与天然气地质, 2021, 42(5): 1210-1222. |
GU Yufeng, ZHANG Daoyong, BAO Zhidong. Lithology identification in tight sandstone reservoirs using CRBM-PSO-XGBoost[J]. Oil & Gas Geology, 2021, 42(5): 1210-1222. | |
[19] |
SHARMA J, GATES I D. Convection at the edge of a steam-assisted-gravity-drainage steam chamber[J]. SPE Journal, 2011, 16(3): 503-512.
doi: 10.2118/142432-PA |
[20] |
IRANI M, GATES I D. Understanding the convection heat-transfer mechanism in steam-assisted-gravity-drainage process[J]. SPE Journal, 2013, 18(6): 1202-1215.
doi: 10.2118/167258-PA |
[21] | STEPHEN R D. Aquathermal pressuring and geopressure evaluation[J]. AAPG Bulletin, 1982, 66(7): 931-939. |
[22] | BOWERS G L. Pore pressure estimation from velocity data: Accounting from overpressure mechanisms besides undercompaction[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 276. |
[23] | BERRYMAN J G. Thermal conductivity of porous media[J]. Applied Physics Letters, 2005, 86(3): 143. |
[24] | TRAN D, LONG N, BUCHANAN L, et al. Odelling thermal geomechanical effects on simulation porosity[C]// Paper ARMA-08-087 presented at the 42nd U.S. Rock Mechanics Symposium, San Francisco, California, USA, June 2008. |
[25] |
SOMERTON W H, KEESE J A, CHU S L. Thermal behavior of unconsolidated oil sands[J]. Society of Petroleum Engineers Journal, 1973, 14(5): 513-521.
doi: 10.2118/4506-PA |
[26] | AHERNE A L, MAINI B. Fluid movement in the SAGD process: A review of the Dover project[J]. Journal of Canadian Petroleum Technology, 2008, 47(1): 31-37. |
[27] | BIRRELL G. Heat transfer ahead of a SAGD steam chamber, a study of thermocouple data from phase B of the underground test facility (Dover project)[J]. Journal of Canadian Petroleum Technology, 2001, 42(3): 40-47. |
[28] |
JI D Q, ZHONG H, DONG M Z, et al. Study of heat transfer by thermal expansion of connate water ahead of a steam chamber edge in the steam-assisted-gravity-drainage process[J]. Fuel, 2015, 150: 592-601.
doi: 10.1016/j.fuel.2015.02.065 |
[1] | XU Ning, CHEN Zhewei, XU Wanchen, WANG Ling, CUI Xiaolei, JIANG Meizhong, ZHAN Changwu. Prediction and evaluation method for development effect of shale oil storage volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 741-748. |
[2] | WEN Xing,WANG Kun,XIE Mingying,FENG Shasha,LI Li,LI Wei. Innovation and practice of secondary development technology for China’s first long-term abandoned deepwater oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 610-617. |
[3] | CHEN Yuanqian,LIU Yang. Derivation, simplification and application for pseudo-pressure elastic two-phase method of gas wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 317-323. |
[4] | TANG Huiying, DI Kaixiang, ZHANG Liehui, GUO Jingjing, ZHANG Tao, TIAN Ye, ZHAO Yulong. Tight oil imbibition based on nuclear magnetic resonance signal calibration method [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 402-413. |
[5] | CHEN Yuanqian,WANG Xin,LIU Yang,SHI Xiaomin. Question and comment for FETKOVICH’s typical curve [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 159-166. |
[6] | SHU Ningkai,LIU Lijie,YAO Xiutian,HUANG Yingsong,LAI Fengpeng,CUI Wenfu. Formation mechanism of extreme water consumption zone and synergistic mode of flow field regulation: A case study of uncompartmentalized oilfield of continental sandstone in the late stage of ultra-high water cut [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 237-246. |
[7] | YAN Jianli,LI Chao,MA Dong,LI Zhuo,WANG Peng. Dynamic and static feature identification method of complex buried hill reservoirs in Bohai and its application [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 308-316. |
[8] | SUN Yili. Mechanism of CO2 injection to improve the water injection capacity of low permeability reservoir in Shuanghe Oilfield in Henan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 55-63. |
[9] | XU Yandong, TAO Shan, HE Hui, WAN Xiaoyong, ZOU Ning, YUAN Hongfei. Well test model of vertical double-hole channeling considering gravity [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 827-833. |
[10] | CHEN Minfeng,QIN Lifeng,ZHAO Kang,WANG Yiwen. Effective injection-production well spacing in pressure-sensitive reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 855-862. |
[11] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[12] | ZHAO Yulong, YANG Bo, CAO Cheng, ZHANG Liehui, ZHOU Xiang, HUANG Chenzhi, RUI Yiming, LI Jinlong. Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 484-494. |
[13] | LUO Xianbo,CHANG Huijiang,LEI Yuan,ZHAI Shangqi,SUN Guangyi. Application status and development direction of optimal injection allocation method for water injection wells [J]. Reservoir Evaluation and Development, 2023, 13(2): 223-232. |
[14] | LI Ying,LI Maomao,LI Haitao,YU Hao,ZHANG Qihui,LUO Hongwen. Physicochemical mechanism of water phase imbibition in shale reservoirs [J]. Reservoir Evaluation and Development, 2023, 13(1): 64-73. |
[15] | WANG Jiaying,ZHAO Renbao,LI Shuxuan,JIA Yu,FU Ning,QI Shuangyu. A new model to predict bubble point pressure: Its establishment and application in Tarim Oildom [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 927-934. |
|