Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (5): 627-635.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.010
• Shale Gas • Previous Articles Next Articles
XIA Haibang1(),HAN Kening1,SONG Wenhui2(),WANG Wei1,YAO Jun3
Received:
2022-11-08
Online:
2023-11-01
Published:
2023-10-26
CLC Number:
Haibang XIA,Kening HAN,Wenhui SONG, et al. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 627-635.
Table 1
Pore structure parameters of matrix digital core of five gas wells in X block of Nanchuan shale"
序号 | 物理尺寸 | 平均孔隙 半径/nm | 平均配位数 |
---|---|---|---|
1号 | 10 μm×10 μm×10 μm | 52.00 | 3.15 |
2号 | 2.96 μm×2.96 μm×2.96 μm | 16.30 | 3.44 |
3号 | 3.01 μm×3.01 μm×3.01 μm | 17.60 | 3.07 |
4号 | 1.46 μm×1.46 μm×1.46 μm | 8.58 | 2.82 |
5号 | 5.97 μm×5.97 μm×5.97 μm | 23.60 | 2.70 |
[1] | 胡晓华, 张清秀, 吴建发, 等. 页岩气井压裂液返排影响因素研究[C]// 全国天然气学术年会, 中国宁夏银川, 2016: 1579-1584. |
HU Xiaohua, ZHANG Qingxiu, WU Jianfa, et al. Influential factors study of flow back of shale gas horizontal wells[C]// Institute of Petroleum and Gas Professional Committee of China, Sichuan Petroleum Institute. 2016 National Natural Gas Academic Annual Conference, Yinchuan, 2016: 1579-1584. | |
[2] | 卢拥军, 王海燕, 管保山, 等. 海相页岩压裂液低返排率成因[J]. 天然气工业, 2017, 37(7): 46-51. |
LU Yongjun, WANG Haiyan, GUAN Baoshan, et al. Reasons for the low flowback rates of fracturing fluids in marine shale[J]. Natural Gas Industry, 2017, 37(7): 46-51. | |
[3] | 樊欣欣, 任晓娟. 致密气藏压裂液伤害特征及实验影响因素分析[J]. 石油化工应用, 2017, 36(4): 24-27. |
FAN Xinxin, REN Xiaojuan. Damage characteristics of fracturing fluid in tight gas reservoir and analysis of experimental factors[J]. Petrochemical Industry Application, 2017, 36(4): 24-27. | |
[4] | 游利军, 王飞, 康毅力, 等. 页岩气藏水相损害评价与尺度性[J]. 天然气地球科学, 2016, 27(11): 2023-2029. |
YOU Lijun, WANG Fei, KANG Yili, et al. Evaluation and scale effect of aqeous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029. | |
[5] | 司志梅, 李爱芬, 郭海萱, 等. 致密油藏压裂液滤液返排率影响因素室内实验[J]. 油气地质与采收率, 2017, 24(1): 122-126. |
SI Zhimei, LI Aifen, GUO Haixuan, et al. Experimental study on the influencing factors of fracturing fluid flowback rate in tight reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 122-126. | |
[6] |
GE H K, YANG L, SHEN Y H, et al. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids[J]. Petroleum Science, 2015, 12(4): 636-650.
doi: 10.1007/s12182-015-0049-2 |
[7] |
HUN L, BING Y, SONG X X, et al. Fracturing fluid retention in shale gas reservoir from the perspective of pore size based on nuclear magnetic resonance[J]. Journal of Hydrology, 2021, 601: 126590.
doi: 10.1016/j.jhydrol.2021.126590 |
[8] | ZHANG Y, LI Z P, LAI F P, et al. Experimental investigation into the effects of fracturing fluid-shale interaction on pore structure and wettability[J]. Geofluids, 2021, 2021: 6637955. |
[9] | 张磊, 康钦军, 姚军, 等. 页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J]. 科学通报, 2014, 59(32): 3197-3203. |
ZHANG Lei, KANG Qinjun, YAO Jun, et al. The explanation of low recovery of fracturing fluid in shale hydraulic fracturing by pore-scale simulation[J]. Chinese Science Bulletin, 2014, 59(32): 3197-3203. | |
[10] |
SONG W H, LIU L J, WANG D Y, et al. Nanoscale confined multicomponent hydrocarbon thermodynamic phase behavior and multiphase transport ability in nanoporous material[J]. Chemical Engineering Journal, 2020, 382: 122974.
doi: 10.1016/j.cej.2019.122974 |
[11] |
YAO J, SONG W H, WANG D Y, et al. Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media[J]. International Journal of Heat and Mass Transfer, 2019, 141: 156-167.
doi: 10.1016/j.ijheatmasstransfer.2019.06.077 |
[12] |
SONG W H, YIN Y, LANDRY C J, et al. A local-effective-viscosity multi-relaxation-time lattice Boltzmann-pore network coupling model to predict gas transport property in complex nanoporous media[J]. SPE Journal, 2020, 26(1): 461-481.
doi: 10.2118/203841-PA |
[13] | ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. Waltham: Academic Press, 2011. |
[14] | BERG J C. An introduction to interfaces & colloids: The bridge to nanoscience[M]. Singapore: World Scientific, 2010. |
[15] |
HEATH J E, BRYAN C R, MATTEO E N, et al. Adsorption and capillary condensation in porous media as a function of the chemical potential of water in carbon dioxide[J]. Water Resources Research, 2014, 50(3): 2718-2731.
doi: 10.1002/wrcr.v50.3 |
[16] |
TOKUNAGA T K. DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs[J]. Langmuir, 2012, 28(21): 8001-8009.
doi: 10.1021/la2044587 |
[17] | BASHKATOV A N, GENINA E A. Water refractive index in dependence on temperature and wavelength: A simple approximation[A]. Proceedings of the Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV[C]. International Society for Optics and Photonics, 2003: 393-395. |
[18] |
GREGORY J. Interaction of unequal double layers at constant charge[J]. Journal of Colloid and Interface Science, 1975, 51(1): 44-51.
doi: 10.1016/0021-9797(75)90081-8 |
[19] |
CHURAEV N, DERJAGUIN B. Inclusion of structural forces in the theory of stability of colloids and films[J]. Journal of Colloid and Interface Science, 1985, 103(2): 542-553.
doi: 10.1016/0021-9797(85)90129-8 |
[20] | VALVATNE P H, BLUNT M J. Predictive pore-scale modeling of two-phase flow in mixed wet media[J]. Water Resources Research, 2004, 40(7): W07406. |
[21] |
PRODANOVIĆ M, BRYANT S L. A level set method for determining critical curvatures for drainage and imbibition[J]. Journal of Colloid and Interface Science, 2006, 304(2): 442-458.
pmid: 17027812 |
[22] | OSHER S, FEDKIW R P. Level set methods and dynamic implicit surfaces[M]. New York: Springer New York, 2005. |
[23] |
PENG D P, MERRIMAN B, OSHER S, et al. A PDE-based fast local level set method[J]. Journal of Computational Physics, 1999, 155(2): 410-438.
doi: 10.1006/jcph.1999.6345 |
[1] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[2] | CUI Chuanzhi, LI Huailiang, WU Zhongwei, ZHANG Chuanbao, LI Hongbo, ZHANG Yinghua, ZHENG Wenkuan. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 686-694. |
[3] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[4] | HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656. |
[5] | YANG Zhaozhong, ZHENG Nanxin, ZHU Jingyi, LI Xiaogang. Preparation of nanoparticle-stabilized foam fracturing fluid and its foam stabilization mechanism [J]. Reservoir Evaluation and Development, 2023, 13(2): 260-268. |
[6] | LI Ying,LI Maomao,LI Haitao,YU Hao,ZHANG Qihui,LUO Hongwen. Physicochemical mechanism of water phase imbibition in shale reservoirs [J]. Reservoir Evaluation and Development, 2023, 13(1): 64-73. |
[7] | SUN Xiaoqin. Poststack fracture prediction technology of shale gas reservoir based on combination of well and seismic in Nanchuan [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 462-467. |
[8] | YOU Lijun,WANG Yang,KANG Yili,TANG Jirui,LIU Jiang,YANG Dongsheng. Physical properties of water-bearing tight sandstone reservoir for improving permeability by thermal stimulation [J]. Reservoir Evaluation and Development, 2022, 12(2): 320-328. |
[9] | SONG Wenhui,LIU Lei,SUN Hai,ZHANG Kai,YANG Yongfei,YAO Jun. Pore structure characterization and flow ability of shale oil reservoir based on digital cores [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 497-505. |
[10] | CEN Tao,XIA Haibang,LEI Lin. Research and application of key technologies for fracturing of normal pressure shale in Southeastern Chongqing [J]. Reservoir Evaluation and Development, 2020, 10(5): 70-76. |
[11] | ZHAO Liqiang,CHEN Yinxin,LIU Pingli,LI Nianyin,LUO Zhifeng,DU Juan. Experimental study on a new type of self-propping fracturing fluid [J]. Reservoir Evaluation and Development, 2020, 10(2): 121-127. |
[12] | WANG Wei,LI Yang,CHEN Zuhua,YAO Jun,MEI Junwei,REN Jianhua,MA Bo. Post-fracturing numerical simulation of shale gas reservoir based on complex flow mechanisms [J]. Reservoir Evaluation and Development, 2020, 10(1): 22-29. |
[13] | GUO Tonglou. A few geological issues in shale gas exploration and development [J]. Reservoir Evaluation and Development, 2019, 9(5): 14-19. |
[14] | You Xianyong,Zhao Jinzhou,Li Yongming,Xu Wenjun. An investigation into fracturing fluid leak-off considering the clustered distributed natural fractures [J]. Reservoir Evaluation and Development, 2019, 9(2): 38-43. |
[15] | He Siyuan,Zhao Liqiang,Luo Zhifeng,Li Jun,Li Hua. Study on indoor gas measurement of supporting fracture conductivity of tight sandstone [J]. Reservoir Evaluation and Development, 2018, 8(6): 45-50. |
|