Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (1): 64-73.doi: 10.13809/j.cnki.cn32-1825/te.2023.01.007
• Methodology and Theory • Previous Articles Next Articles
LI Ying(),LI Maomao(),LI Haitao,YU Hao,ZHANG Qihui,LUO Hongwen
Received:
2021-10-22
Online:
2023-01-30
Published:
2023-02-26
Contact:
LI Maomao
E-mail:yingingli@163.com;limaomao819@163.com
CLC Number:
Ying LI,Maomao LI,Haitao LI, et al. Physicochemical mechanism of water phase imbibition in shale reservoirs[J]. Reservoir Evaluation and Development, 2023, 13(1): 64-73.
Table 1
Parameters of the first group of experimental samples"
样品 | 编号 | 长度(cm) | 直径(cm) | 边界条件 |
---|---|---|---|---|
CN1区块 | CN1-1-1 | 1.01 | 2.53 | TEO |
CN1-1-2 | 1.01 | 2.53 | 重复渗吸 | |
CN1-2 | 3.04 | 2.54 | TEO | |
CN2区块 | CN2-1-1 | 1.00 | 2.53 | TEO |
CN2-1-2 | 1.00 | 2.53 | 重复渗吸 | |
CN2-2 | 1.93 | 2.53 | TEO | |
YN区块 | YN-1-1 | 0.84 | 2.51 | TEO |
YN-1-2 | 0.84 | 2.51 | 重复渗吸 | |
YN-2 | 1.78 | 2.53 | TEO | |
CQ区块 | CQ-1-1 | 0.84 | 2.54 | TEO |
CQ-1-2 | 0.84 | 2.54 | 重复渗吸 | |
CQ-2 | 1.92 | 2.55 | TEO | |
CQ-3 | 2.88 | 2.55 | TEO | |
致密砂岩 | S-1 | 3.35 | 2.52 | TEO |
S-1-2 | 3.35 | 2.52 | 重复渗吸 | |
S-2 | 4.91 | 2.52 | TEO |
Table 5
Parameters and time index of shale samples with different sizes"
编号 | 长度(cm) | 直径(cm) | n | |
---|---|---|---|---|
CN1-1-1 | 1.01 | 2.53 | 0.41 | 0.365 |
CN1-2 | 3.04 | 2.54 | 0.13 | 0.344 |
CN2-1-1 | 1.00 | 2.53 | 0.40 | 0.336 |
CN2-2 | 1.93 | 2.52 | 0.20 | 0.360 |
YN-1-1 | 0.84 | 2.51 | 0.45 | 0.560 |
YN-2 | 1.78 | 2.53 | 0.21 | 0.470 |
CQ-1-1 | 0.84 | 2.54 | 0.44 | 0.402 |
CQ-3 | 2.88 | 2.55 | 0.13 | 0.378 |
[1] | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. | |
[2] | 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80. |
ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80. | |
[3] | 陈煌. 页岩气开发技术现状及研究方向[J]. 化工设计通讯, 2020, 46(8)24, 28. |
CHEN Huang. Current status and research direction of shale gas development technology[J]. Chemical Engineering Design Communications, 2020, 46(8): 24, 28. | |
[4] |
VENGOSH A, JACKSON R B, WARNER N R, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
doi: 10.1021/es405118y |
[5] | 康毅力, 张晓怡, 游利军, 等. 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学, 2017, 28(6): 819-827. |
KANG Yili, ZHANG Xiaoyi, YOU Lijun, et al. The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs[J]. Natural Gas Geoscience, 2017, 28(6): 819-827. | |
[6] | 游利军, 王飞, 康毅力, 等. 页岩气藏水相损害评价与尺度性[J]. 天然气地球科学, 2016, 27(11): 2023-2029. |
YOU Lijun, WANG Fei, KANG Yili, et al. Evaluation and scale effect of aqeous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029. | |
[7] |
GHANBARI E, DEHGHANPOUR H. Impact of rock fabric on water imbibition and salt diffusion in gas shales[J]. International Journal of Coal Geology, 2015, 138: 55-67.
doi: 10.1016/j.coal.2014.11.003 |
[8] | SCOTT H, PATEY I T M, BYRNE M T. Return permeability measurements-proceed with caution[C]// Paper SPE-107812-MS presented at the European Formation Damage Conference, Scheveningen, The Netherlands, May 2007. |
[9] | 黄睿哲, 姜振学, 高之业, 等. 页岩储层组构特征对自发渗吸的影响[J]. 油气地质与采收率, 2017, 24(1): 111-115. |
HUANG Ruizhe, JIANG Zhenxue, GAO Zhiye, et al. Effect of composition and structural characteristics on spontaneous imbibition of shale reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 111-115. | |
[10] | 李春颖, 张志全, 林飞, 等. 压裂液在页岩储层中的滞留与吸收初步探索[J]. 科技通报, 2016, 32(8)31-35. |
LI Chunying, ZHANG Zhiquan, LIN Fei, et al. Initial exploration of fracturing fluid retention in shale reservoirs[J]. Bulletin of Science and Technology, 2016, 32(8): 31-35. | |
[11] | 周彤, 张士诚, 杨柳, 等. 页岩储层压裂裂缝表面软化规律实验研究[J]. 西安石油大学学报(自然科学版), 2017, 32(1): 57-63. |
ZHOU Tong, ZHANG Shicheng, YANG Liu, et al. Experimental study on surface softening law of fracturing fracture in shale reservoirs[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(1): 57-63. | |
[12] | 杨柳, 鲁晓兵, 葛洪魁, 等. 致密储层渗吸特征与孔径分布的关系[J]. 科学技术与工程, 2019, 19(16): 106-111. |
YANG Liu, LU Xiaobing, GE Hongkui, et al. The relationship between imbibition characteristics and pore size distribution[J]. Science Technology and Engineering, 2019, 19(16): 106-111. | |
[13] | 申颍浩, 葛洪魁, 宿帅, 等. 页岩气储层的渗吸动力学特性与水锁解除潜力[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 88-98. |
SHEN Yinghao, GE Hongkui, SU Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2017, 47(11): 88-98. | |
[14] | 熊健, 陈守松, 梁利喜, 等. 龙马溪组页岩的渗吸特征及其影响因素[J]. 桂林理工大学学报, 2020, 40(4): 688-694. |
XIONG Jian, CHEN Shousong, LIANG Lixi, et al. Imbibition characteristics and influencing factors of Longmaxi Formation shale[J]. Journal of Guilin University of Technology, 2020, 40(4): 688-694. | |
[15] | 于佳尧, 葛洪魁, 于雪盟, 等. 页岩油储层自发渗吸特征及影响因素的实验研究[C]// 2019油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2019: 727-732. |
YU Jiayao, GE Hongkui, YU Xuemeng, et al. Experimental study on spontaneous imbibition characteristics and influencing factors of shale oil reservoirs[C]// International Field Exploration and Development Conference 2019, 2019: 727-732. | |
[16] | 王敉邦, 蒋林宏, 包建银, 等. 渗吸实验描述与方法适用性评价[J]. 石油化工应用, 2015, 34(12): 102-105. |
WANG Mibang, JIANG Linhong, BAO Jianyin, et al. Imbibition experimental description and methods' applicability evaluation[J]. Petrochemical Industry Application, 2015, 34(12): 102-105. | |
[17] | 叶洪涛, 宁正福, 王庆, 等. 页岩储层自发渗吸实验及润湿性研究[J]. 断块油气田, 2019, 26(1): 84-87. |
YE Hongtao, NING Zhengfu, WANG Qing, et al. Spontaneous imbibition experiment and wettability of shale reservoir[J]. Fault Block Oil & Gas Field, 2019, 26(1): 84-87. | |
[18] | 程秋洋, 游利军, 康毅力, 等. 氧化溶蚀作用对页岩水相自吸的影响[J]. 油气地质与采收率, 2020, 27(4): 94-103. |
CHENG Qiuyang, YOU Lijun, KANG Yili, et al. Effect of oxidative dissolution on water spontaneous imbibition in shale gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 94-103. | |
[19] | 毛伟, 贾红兵, 杜朋举. 核磁共振技术在油水两相渗流特征研究中的应用[J]. 特种油气藏, 2011, 18(6): 103-105. |
MAO Wei, JIA Hongbing, DU Pengju. Application of NMR in the study of oil/water two phase flow[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 103-105. | |
[20] | 穆英, 胡志明, 端祥刚, 等. 页岩吸水对储层的作用机理研究[J]. 天然气与石油, 2020, 38(6): 73-79. |
MU Ying, HU Zhiming, DUAN Xianggang, et al. Study on shale water absorption mechanism on reservoir[J]. Natural Gas and Oil, 2020, 38(6): 73-79. | |
[21] |
LUCAS R. Rate of capillary ascension of liquids[J]. Kolloid-Zeitschrift, 1918, 23(15): 15-22.
doi: 10.1007/BF01461107 |
[22] |
WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283.
doi: 10.1103/PhysRev.17.273 |
[23] |
LAM C H, HORVÁTH V K. Pipe network model for scaling of dynamic interfaces in porous media[J]. Physical Review Letters, 2000, 85(6): 1238-1241.
pmid: 10991521 |
[24] | ZHOU K, ZHANG W, LI Y, ET AL. Prediction of recovery by spontaneous imbibition in gas/liquid/rock systems[C]// Paper SPE-107355-MS presented at the EUROPEC/EAGE Conference and Exhibition, London, June 2007. |
[25] | MA S X, MORROW N R, ZHANG X Y. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science & Engineering, 1997, 18(3-4): 165-178. |
[26] |
HU Q H, EWING R P, DULTZ S. Low pore connectivity in natural rock[J]. Journal of Contaminant Hydrology, 2012, 133: 76-83.
doi: 10.1016/j.jconhyd.2012.03.006 pmid: 22507286 |
[1] | HE Faqi, LI Junlu, GAO Yilong, WU Jinwei, BAI Xingying, GAO Dun. Development characteristics and potential of fault-fracture reservoir in southwest margin of Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 667-677. |
[2] | CAO Xiaopeng, LIU Haicheng, LI Zhongxin, CHEN Xianchao, JIANG Pengyu, FAN Hao. Optimization of huff-n-puff in shale oil horizontal wells based on EDFM [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 734-740. |
[3] | LIAO Kai, ZHANG Shicheng, XIE Bobo. Simulation of reasonable shut-in time for shale oil after volume fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 749-755. |
[4] | ZHENG Xin, ZHAO Yuchao, ZHAO Zihan, TANG Huiying, ZHAO Yulong. Mechanism investigation on in-situ stress characteristics and mechanical integrity of fracture-cavity carbonate underground gas storage reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 814-824. |
[5] | WANG Jiawei, ZHANG Bohu, HU Yao, HE Zhengyi, HU Xinxin, CHEN Wei, LUO Chao. Inversion of multiphase tectonic stress field and fracture evolution in shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 560-568. |
[6] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[7] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[8] | DUAN Hongliang,SHEN Tingshan,SUN Jing,HONG Yafei,LI Sichen,LU Xianrong,ZHANG Zhengyang. Experimental study of oil matrix and fracture flow capacity of shale oil in Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 333-342. |
[9] | KONG Xiangwei,XU Hongxing,SHI Xian,CHEN Hang. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401. |
[10] | TANG Huiying, DI Kaixiang, ZHANG Liehui, GUO Jingjing, ZHANG Tao, TIAN Ye, ZHAO Yulong. Tight oil imbibition based on nuclear magnetic resonance signal calibration method [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 402-413. |
[11] | SUN Yaxiong,ZHU Xiangyu,QIU Xuming,LIU Qidong,DUAN Hongliang,QIU Yongfeng,GONG Lei. Characteristics of shale fractures in the second member of Funing Formation in Gaoyou Sag of Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 414-424. |
[12] | LIU Xiao. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518. |
[13] | LI Ning,MIAO He,CAO Kaifang. Prediction of volcanic fractures based on prestack azimuthal anisotropy: A case study of LFS area in southern Songliao Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 197-206. |
[14] | CHEN Hongcai, LI Zhaorui. Seismic prediction technology for thin sandstone reservoir of Dainan Formation in Majiazui Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 108-116. |
[15] | REN Hong,LI Weiqi,GUO Zhongchun,YANG Xiaoteng,XU Jian,WANG Xiao. Dynamic quantitative characterization and automatic identification of the buried hill reservoir types in Yakela block [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 789-800. |
|