Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (5): 647-656.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.012
• Shale Gas • Previous Articles Next Articles
HAN Kening1(),WANG Wei1,FAN Dongyan2(),YAO Jun2,LUO Fei2,YANG Can2
Received:
2022-11-08
Online:
2023-11-01
Published:
2023-10-26
CLC Number:
Kening HAN,Wei WANG,Dongyan FAN, et al. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656.
Table 1
Prediction results and comparison of Well-X1 decline models"
分析方法 | 检验平均 误差/ % | 5 a后 日产气量/ m3 | 10 a 累产气量/ 108 m3 | 可采 储量/ 108 m3 | 剩余可采 储量/ 108 m3 |
---|---|---|---|---|---|
指数递减 | 5.43 | 15 068.31 | 1.01 | 1.06 | 0.76 |
双曲递减 | 6.41 | 16 330.13 | 1.02 | 1.65 | 1.35 |
改进双曲递减 | 3.75 | 18 449.74 | 1.08 | 1.79 | 1.49 |
SEPD | 10.98 | 41 951.91 | 1.87 | 28.14 | 27.84 |
PLE | 5.94 | 32 128.20 | 1.52 | 2.88 | 2.59 |
Duong递减 | 3.95 | 31 257.25 | 1.50 | 5.18 | 5.17 |
AKB递减 | 3.85 | 17 832.17 | 1.08 | 1.36 | 1.07 |
Table 2
Prediction results and comparison of Well-X1 coupling method"
分析方法 | 检验 平均 误差/% | 5 a后 日产气量/ m3 | 10 a累 产气量/ 108 m3 | 可采 储量/ 108 m3 | 剩余可采 储量/ 108 m3 |
---|---|---|---|---|---|
指数递减+LSTM | 3.14 | 13 874.96 | 0.96 | 0.98 | 0.68 |
双曲递减+LSTM | 3.84 | 20 096.66 | 1.14 | 1.96 | 1.44 |
改进双曲递减+LSTM | 5.38 | 15 099.31 | 0.96 | 1.45 | 1.32 |
SEPD+LSTM | 4.33 | 35 492.72 | 1.63 | 25.34 | 25.07 |
PLE+LSTM | 6.23 | 29 230.75 | 1.42 | 2.75 | 2.41 |
Duong递减+LSTM | 4.15 | 30 748.86 | 1.48 | 5.03 | 4.98 |
AKB递减+LSTM | 3.99 | 19 444.62 | 1.13 | 1.53 | 1.36 |
Table 3
Prediction result and comparison of Well-X2 decline models"
序号 | 分析方法 | 检验平均误差/% | 5 a后日产气量/m3 | 10 a累产气量/108 m3 | 可采储量/108 m3 | 剩余可采储量/108 m3 |
---|---|---|---|---|---|---|
1 | 指数递减 | 18.94 | 140 | 0.17 | 0.17 | 0.04 |
2 | 双曲递减 | 17.07 | 2 519 | 0.24 | 0.28 | 0.17 |
3 | 改进双曲递减 | 19.01 | 2 459 | 0.24 | 0.27 | 0.16 |
4 | SEPD | 13.30 | 2 075 | 0.23 | 0.23 | 0.12 |
5 | PLE | 15.43 | 1 579 | 0.21 | 0.21 | 0.1 |
6 | Duong递减 | 13.54 | 4 327 | 0.43 | 0.43 | 0.31 |
7 | AKB递减 | 23.47 | 1 257 | 0.20 | 0.20 | 0.08 |
Table 4
Prediction results and comparison of Well-X2 coupling methods"
序号 | 分析方法 | 检验平均误差/% | 5 a后日产气量/m3 | 10 a累产气量/108 m3 | 可采储量/108 m3 | 剩余可采储量/108 m3 |
---|---|---|---|---|---|---|
1 | 指数递减+LSTM | 3.14 | 3 147 | 0.17 | 0.19 | 0.06 |
2 | 双曲递减+LSTM | 3.84 | 2 887 | 0.25 | 0.31 | 0.19 |
3 | 改进双曲递减+LSTM | 5.38 | 2 798 | 0.25 | 0.30 | 0.17 |
4 | SEPD+LSTM | 4.33 | 3 051 | 0.26 | 0.27 | 0.13 |
5 | PLE+LSTM | 6.23 | 1 146 | 0.19 | 0.19 | 0.10 |
6 | Duong递减+LSTM | 4.15 | 4 660 | 0.44 | 0.46 | 0.35 |
7 | AKB递减+LSTM | 3.99 | 1 524 | 0.20 | 0.21 | 0.10 |
[1] | 何希鹏, 张培先, 房大志, 等. 渝东南彭水—武隆地区常压页岩气生产特征[J]. 油气地质与采收率, 2018, 25(5): 72-79. |
HE Xipeng, ZHANG Peixian, FANG Dazhi, et al. Production characteristics of normal pressure shale gas in Pengshui-Wulong area, southeast Chongqing[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 72-79. | |
[2] | 姜宇玲, 陈晓宇, 包汉勇. 页岩气分段压裂水平井产量递减快速预测新模型——以涪陵页岩气田为例[J]. 天然气地球科学, 2021, 32(6): 845-850. |
JIANG Yuling, CHEN Xiaoyu, BAO Hanyong. A new model for rapid prediction of horizontal well production decline in shale gas staged fracturing: Case study of Fuling shale gas field[J]. Natural Gas Geoscience, 2021, 32(6): 845-850. | |
[3] | 付天宇, 刘启国, 岑雪芳, 等. 碳酸盐岩三重介质气藏NPI产量递减分析研究[J]. 油气藏评价与开发, 2021, 11(6): 905-910. |
FU Tianyu, LIU Qiguo, CEN Xuefang, et al. Normalized pressure integral production analysis of triporate-uniphase parallel inter-porosity flow model[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 905-910. | |
[4] | YU S Y. Best practice of using empirical methods for production forecast and EUR estimation in tight/shale gas reservoirs[C]// Paper SPE-167118-MS presented at the SPE Unconventional Resources Conference Canada, Calgary, Alberta, Canada, November 2013. |
[5] | FULFORD D S, BLASINGAME T A. Evaluation of time- rate performance of shale wells using the transient hyperbolic relation[C]// Paper SPE-167242-MS presented at the SPE Unconventional Resources Conference, Calgary, Alberta, Canada, November 2013. |
[6] | 闫建平, 罗静超, 石学文, 等. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. |
YAN Jianping, LUO Jingchao, SHI Xuewen, et al. Fracture development models and significance of Ordovician Wufeng Silurian Longmaxi shale in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(6): 60-71. | |
[7] | 王静怡, 周志军, 魏华彬, 等. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154. |
WANG Jingyi, ZHOU Zhijun, WEI Huabin, et al. Simulation of oil-water two-phase flow based on shale pore network model[J]. Lithologic Reservoirs, 2021, 33(5): 148-154. | |
[8] | CÉDRIC F G, OUASSIM K, SOHEIL E. Improved time series decline curve analysis for oil production using recurrent neural network[C]// Paper presented at the Artificial Intelligence Principles and Techniques, Stanford University, USA, 2019. |
[9] | SUN J L, MA X, KAZI M. Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells[C]// Paper SPE-190101-MS presented at the SPE Western Regional Meeting, Garden Grove, California, USA, April 2018. |
[10] | 温康, 闫建平, 钟光海, 等. 川南长宁地区五峰组—龙马溪组页岩气评价新方法[J]. 岩性油气藏, 2022, 34(1): 95-105. |
WEN Kang, YAN Jianping, ZHONG Guanghai, et al. Application of modified unbiased grey model to the prediction of oil and gas field production[J]. Lithologic Reservoirs, 2022, 34(1): 95-105. | |
[11] |
SONG X Y, LIU Y T, XUE L, et al. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106682.
doi: 10.1016/j.petrol.2019.106682 |
[12] |
SAGHEER A, KOTB M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing, 2019, 323: 203-213.
doi: 10.1016/j.neucom.2018.09.082 |
[13] |
LEE K, LIM J, YOON D, et al. Prediction of shale-gas production at Duvernay formation using deep-learning algorithm[J]. SPE Journal, 2019, 24(6): 2423-2437.
doi: 10.2118/195698-PA |
[14] | BAGHERI M, ZHAO H R, SUN M Y, et al. Data conditioning and forecasting methodology using machine learning on production data for a well pad[C]// Paper OTC-30854-MS presented at the Offshore Technology Conference, Houston, Texas, USA, May 2020. |
[15] | IMAMVERDIYEV Y, ABDULLAYEVA F. Development of oil production forecasting method based on deep learning[J]. Statistics Optimization & Information Computing, 2019, 7(4): 826-839. |
[16] |
LIU W, LIU W D, GU J W. Forecasting oil production using ensemble empirical model decomposition based Long Short-Term Memory neural network[J]. Journal of Petroleum Science and Engineering, 2020, 189: 107013.
doi: 10.1016/j.petrol.2020.107013 |
[17] |
KARASU S, ALTAN A, BEKIROS S, et al. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series[J]. Energy 2020, 212: 118750.
doi: 10.1016/j.energy.2020.118750 |
[18] | ARPS J J. Analysis of decline curves[J]. Petroleum Transactions, 1945, 160(1): 228-247. |
[19] | SESHADRI J, MATTAR L. Comparison of power law and modified hyperbolic decline methods[C]// Paper SPE-137320-MS presented at the Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, October 2010. |
[20] | ILK D, PEREGO A D, RUSHING J A, et al. Integrating multiple production analysis techniques to assess tight gas sand reserves: Defining a new paradigm for industry best practices[C]// Paper SPE-114947-MS presented at the CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, Alberta, Canada, June 2008. |
[21] | ILK D, RUSHING J A, PEREGO A D, et al. Exponential vs. hyperbolic decline in tight gas sands: understanding the origin and implications for reserve estimates using Arps' decline curves[C]// Paper SPE-116731-MS presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 2008. |
[22] | VALKO P P, LEE W J. A better way to forecast production from unconventional gas wells[C]// Paper SPE-134231-MS presented at the SPE Annual Technical conference and Exhibition, Florence, Italy, September 2010. |
[23] | VALKO P P. Assigning value to stimulation in the Barnett Shale:A simultaneous analysis of 7 000 plus production histories and well completion records[C]// Paper SPE-119369-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, January 2009. |
[24] | DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 377-387. |
[25] | DUONG A N. Rate-decline analysis for fracture dominated shale reservoirs: Part2[C]// Paper SPE-171610-MS presented at the SPE/CSUR Unconventional Resources Conference-Canada, Calgary, Alberta, Canada, September 2014. |
[26] | YU S Y, LEE W J, MIOCEVIC D J, et al. Estimating proved reserves in tight/shale wells using the modified SEPD method[C]// Paper SPE-166198-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2013. |
[27] | ANSAH J, KNOWLES R S, BLASINGAME T A. A semi-analytic(p/z)rate time relation for the analysis and prediction of gas well performance[J]. SPE Reservoir Evaluation & Engineering, 2000, 3(6): 525-533. |
[28] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[1] | GUO Zhidong, KANG Yili, WANG Yubin, GU Linjiao, YOU Lijun, CHEN Mingjun, YAN Maoling. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150. |
[2] | CUI Chuanzhi,LI Jinghong,WU Zhongwei,ZHANG Tuan,ZHANG Chuanbao. Calculation and analysis of breakthrough pressure of caprock in CO2 storage [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 322-329. |
[3] | CHEN Xiulin, WANG Xiuyu, XU Changmin, ZHANG Cong. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. |
[4] | ZHOU Haiyan,ZHANG Yunlai,LIANG Xiao,ZHANG Jilei,XU Yanan,LIU Jizhu. Liquid production splitting of multi-layer mining considering multiple factors [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 945-950. |
[5] | YANG Jian,ZHAN Guowei,ZHAO Yong,REN Chunyu,QU Chongjiu. Characteristics of supercritical adsorption and desorption of deep shale gas in South Sichuan [J]. Reservoir Evaluation and Development, 2021, 11(2): 184-189. |
[6] | ZHANG Shanyi,LAN Jinyu. Research on fracturing layer combination method based on mutation series method [J]. Reservoir Evaluation and Development, 2020, 10(5): 108-113. |
[7] | JI Anzhao,WANG Yufeng. Pressure transient characteristics of fractured wells in closed fault composite reservoirs [J]. Reservoir Evaluation and Development, 2019, 9(6): 35-41. |
[8] | KANG Yili,BAI Jiajia,LI Xiangchen,CHEN Mingjun,YOU Lijun,LI Xinlei,LI Qing,FANG Dazhi. Influence of water-rock interaction on stress sensitivity of organic-rich shales: A case study from Longmaxi formation in the southeast area of Chongqing [J]. Reservoir Evaluation and Development, 2019, 9(5): 54-62. |
[9] | Li Yongming,Wu Lei,Chen Xi. Research on productivity of fractured horizontal wells in shale gas reservoirs based on anomalous diffusion model [J]. Reservoir Evaluation and Development, 2019, 9(1): 72-79. |
[10] | Yu Qiannan,Liu Yikun,Yao Di,Liu Xue,Yu Yang. Experimental study on seepage flow patterns of fine controlled fractured thin and poor reservoirs [J]. Reservoir Evaluation and Development, 2019, 9(1): 15-22. |
[11] | Li Linlin. A boundary modification for water and electricity analogy experiment of fractured horizontal wells [J]. Reservoir Evaluation and Development, 2019, 9(1): 61-64. |
|