Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (5): 657-667.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.013
• Shale Gas • Previous Articles Next Articles
ZHANG Jiawei(),LIU Xiangjun(),XIONG Jian,LIANG Lixi,REN Jianfei,LIU Baiqu
Received:
2022-08-08
Online:
2023-11-01
Published:
2023-10-26
CLC Number:
Jiawei ZHANG,Xiangjun LIU,Jian XIONG, et al. Discrete element simulation study on fracture propagation law of dual well synchronous fracturing[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 657-667.
[1] |
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望-以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187.
doi: 10.7623/syxb201202001 |
ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
doi: 10.7623/syxb201202001 |
|
[2] | 张宏学, 刘卫群. 页岩气开采的相关实验、模型和环境效应[J]. 岩土力学, 2014, 35(S2): 85-100. |
ZHANG Hongxue, LIU Weiqun. Relevant experiments, models and environmental effect of shale gas production[J]. Rock and Soil Mechanics, 2014, 35(S2):85-100. | |
[3] | 张金川, 陶佳, 李中明, 等. 中国页岩剖面区域分布及其页岩气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 29-46. |
ZHANG Jinchuan, TAO Jia, LI Zhongming, et al. Regional distribution of field shale outcrop in China and its shale gas significance[J]. Reservoir Evaluation and Development, 2022, 12(1): 29-46. | |
[4] | 易同生, 陈捷. 黔西石炭系页岩气赋存特征与勘探潜力[J]. 油气藏评价与开发, 2022, 12(1): 82-94. |
YI Tongsheng, CHEN Jie. Occurrence characteristics and exploration potential of Carboniferous shale gas in western Guizhou[J]. Reservoir Evaluation and Development, 2022, 12(1): 82-94. | |
[5] | 曾义金, 杨春和, 张保平. 页岩气开发工程中的理论与实践[M]. 北京: 科学出版社, 2017. |
ZENG Yijin, YANG Chunhe, ZHANG Baoping. The theory and practice in shale gas development engineering[M]. Beijing: Science Press, 2017. | |
[6] | 张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1): 80-86. |
ZHANG Leilei, LU Zhengyuan, WANG Jun, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(1): 80-86. | |
[7] | 兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征[J]. 石油地质与工程, 2021, 35(5): 27-32. |
LAN Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies[J]. Petroleum Geology & Engineering, 2021, 35(5): 27-32. | |
[8] | 唐颖, 张金川, 张琴, 等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业, 2010, 30(10): 33-38. |
TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of hydraulic fracturing technology in shale gas wells and its application[J]. Natural Gas Industry, 2010, 30(10): 33-38. | |
[9] | 曾慧勇, 陈立峰, 陈亚东, 等. 压裂-驱油一体化工作液研究进展[J]. 油气地质与采收率, 2022, 29(3): 162-170. |
ZENG Huiyong, CHEN Lifeng, CHEN Yadong, et al. Research progress on fracturing-oil displacement integrated working fluid[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 162-170. | |
[10] | 刘子军. 基于Pearson 相关系数的低渗透砂岩油藏重复压裂井优选方法[J]. 油气地质与采收率, 2022, 29(2): 140-144. |
LIU Zijun. Method for selecting repeated fracturing wells in low-permeability sandstone reservoirs based on Pearson correlation coefficient[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 140-144. | |
[11] | 崔青. 美国页岩气压裂增产技术[J]. 石油化工应用, 2010, 29(10): 1-3. |
CUI Qing. Fracture-stimulation technology of American shale gas[J]. Petrochemical Industry Application, 2010, 29(10): 1-3. | |
[12] |
CHEN X Y, LI Y M, ZHAO J Z, et al. Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2017, 51: 44-52.
doi: 10.1016/j.jngse.2017.12.014 |
[13] | DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers & Geotechnics, 2016, 71: 283-294. |
[14] | 杨喜萍, 胡景宏, 付亮, 等. 致密砂岩气藏射孔完井裂缝起裂压力研究[J]. 石油地质与工程, 2022, 36(6): 92-99. |
YANG Xiping, HU Jinghong, FU Liang, et al. Fracture initiation pressure of perforation completion in tight sandstone gas reservoir[J]. Petroleum Geology & Engineering, 2022, 36(6): 92-99. | |
[15] |
LIU X Q, RASOULI V, GUO T K, et al. Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling[J]. Engineering Fracture Mechanics, 2020, 238: 107278.
doi: 10.1016/j.engfracmech.2020.107278 |
[16] |
MANRIQUEZ A L. Stress behavior in the near fracture region between adjacent horizontal wells during multistage fracturing using a coupled stress-displacement to hydraulic diffusivity model[J]. Journal of Petroleum Science and Engineering, 2018, 162: 822-834.
doi: 10.1016/j.petrol.2017.11.009 |
[17] | SHAN Q L, ZHANG R X, JIANG Y J. Complexity and tortuosity hydraulic fracture morphology due to near-wellbore nonplanar propagation from perforated horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2021, 89(1). |
[18] |
LI XIANG, FENG Z J, HAN G, et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(2): 63-76.
doi: 10.1007/s40948-016-0022-6 |
[19] |
XUE J Q, LI N Y, LU X B. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters[J]. Petroleum, 2017, 3(4): 454-460.
doi: 10.1016/j.petlm.2017.04.001 |
[20] |
WU Y, HUANG Z, ZHAO K, et al. Unsteady seepage solutions for hydraulic fracturing around vertical wellbores in hydrocarbon reservoirs[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9496-9503.
doi: 10.1016/j.ijhydene.2020.01.222 |
[21] | BRUNO M S, NAKAGAWA F M. Bore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences and, 1991, 28(4): 261-273. |
[22] | CUNDALL P A. A discontinuous future for numerical modelling in geomechanics?[J]. Geotechnical Engineering, 2001, 149(1): 41-47. |
[23] |
DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71: 283-294.
doi: 10.1016/j.compgeo.2015.06.007 |
[24] | DUAN K, LI Y C, YANG W D. Discrete element method simulation of the growth and efficiency of multiple hydraulic fractures simultaneously-induced from two horizontal wells[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7. |
[25] |
KWOK C Y, DUAN K, PIERCE M. Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method[J]. Acta Geotechnica, 2020, 15(1): 245.
doi: 10.1007/s11440-019-00858-y |
[26] | 李静, 孔祥超, 宋明水, 等. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156. |
LI Jing, KONG Xiangchao, SONG Mingshui, et al. Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation[J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156. | |
[27] | AL-BUSAIDI A, HAZZARD J F, YOUNG R P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite[J]. Journal Geophysical Research-Oceans, 2005, 110: B06302. |
[28] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
doi: 10.1680/geot.1979.29.1.47 |
[29] | 刘鹏. 砂砾岩水压致裂机理的实验与数值模拟研究[D]. 北京: 中国矿业大学(北京), 2017. |
LIU Peng. Experimental and numerical simulating studies on hydrofracturing mechanism of glutenite[D]. Beijing: China University of Mining and Technology(Beijing), 2017. | |
[30] | SNEDDON I N. The distribution of stress in the neighbourhood of a crack in an elastic solid[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 187(1009): 229-260. |
[1] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[2] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[3] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[4] | LI Xiaogang, HE Jiangang, YANG Zhaozhong, YI Liangping, HUANG Liuke, DU Bodi, ZHANG Jingqiang. Fracture characteristics based on discrete element method [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 348-357. |
[5] | WANG Xiaoqiang,ZHAO Li’an,WANG Zhiyuan,XIU Chunhong,JIA Guolong,DONG Yan,LU Detang. Data analysis method of pump shutdown pressure based on water hammer effect and cepstrum transformation [J]. Reservoir Evaluation and Development, 2023, 13(1): 108-116. |
[6] | HOU Mengru,LIANG Bing,SUN Weiji,LIU Qi,ZHAO Hang. Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing [J]. Reservoir Evaluation and Development, 2023, 13(1): 100-107. |
[7] | CHEN Shaoying,WANG Wei,YANG Qingchun,ZHANG Lisong. Sequential coupling thermal-hydro-mechanical model for multiple cluster of fracturing network fracturing in dry hot rock reservoir [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 869-876. |
[8] | YANG Zhaozhong,YUAN Jianfeng,ZHU Jingyi,LI Xiaogang,LI Yang,WANG Hao. Thermal injection stimulation to enhance coalbed methane recovery [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 617-625. |
[9] | SHI Juntai,LI Wenbin,ZHANG Longlong,JI Changjiang,LI Guofu,ZHANG Sui'an. An inversion method of initial coal reservoir pressure using fracturing process data [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 564-571. |
[10] | ZHOU Xin,LIU Xiangjun,DING Yi,LIANG Lixi,LIU Yexuan. Simulation of intersecting hydraulic fractures with natural fractures considering layer barrier effect [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 515-525. |
[11] | TANG Botao,ZENG Ji,CHEN Weihua,CHEN Yixin,WANG Tao,LIU Cheng,FENG Feng. Multi cluster perforation optimization design method and its application effect of tight sandstone horizontal wells in Qiulin area, central Sichuan [J]. Reservoir Evaluation and Development, 2022, 12(2): 337-344. |
[12] | WEI Jiaxin,ZHANG Yan,SHANG Jiaohui,LYU Na,LIU Wenchao,WANG Hengkai,MA Fujian,ZHANG Qitao. Principal factor analysis on initial productivity in shale oil development: A case study of Block Li-151 in Changqing Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 550-558. |
[13] | ZHANG Bohu,ZHOU Changman,ZHENG Yongxiang,LIU Jianjun. Influence of orthogonal joint and stress ratio coefficients on hydraulic fracture propagation [J]. Reservoir Evaluation and Development, 2020, 10(5): 55-62. |
[14] | ZHAO Liqiang,CHEN Yinxin,LIU Pingli,LI Nianyin,LUO Zhifeng,DU Juan. Experimental study on a new type of self-propping fracturing fluid [J]. Reservoir Evaluation and Development, 2020, 10(2): 121-127. |
[15] | YANG Zhaozhong,GAO Chenxuan,LI Xiaogang,LIU Jinxuan,LIAO Zijia. Laboratory study on reducing fracturing friction of shale reservoir by proppant slug during pad [J]. Reservoir Evaluation and Development, 2020, 10(1): 77-83. |
|